Version française

Vincent Lefèvre's Publications

The following list has been generated from the bibtex file with my Perl script bib2html.

Some papers are available both in postscript (compressed with gzip) and in PDF. For these papers, the chosen format for the main link will be obtained by HTTP negotiation, according to your browser preferences. More information on the file formats.

You can also have a look at the list of my publications registered on HAL (exhaustive as of 2002), generated by Haltools:

Publications

[CalLef2004a]
J. Calmet and V. Lefèvre. Toward the integration of numerical computations into the OMSCS framework. In V.G. Ganzha and E.W. Mayr and E.V. Vorozhtsov, editor, Proceedings of the 7th International Workshop on Computer Algebra in Scientific Computing (CASC 2004), pages 71–79, Saint Petersburg, Russia, July 2004.
Alternative links: [HAL-Inria / HAL-CCSd] [postscript] [PDF]
[CasLefZim2004a]
A. Castiel, V. Lefèvre and P. Zimmermann. Le « dilemme du fabricant de tables » ou comment calculer juste. Interstices, February 2004.
Alternative link: [HAL-Inria / HAL-CCSd]
[DHLMRZ2004a]
D. Defour, G. Hanrot, V. Lefèvre, J.-M. Muller, N. Revol and P. Zimmermann. Proposal for a standardization of mathematical function implementation in floating-point arithmetic. Numerical Algorithms, 37(1–4):367–375, December 2004.
DOI: 10.1023/B:NUMA.0000049482.38935.0b
Alternative link: [HAL-Inria / HAL-CCSd]
[DHLMRZ2004b]
D. Defour, G. Hanrot, V. Lefèvre, J.-M. Muller, N. Revol and P. Zimmermann. Proposal for a standardization of mathematical function implementation in floating-point arithmetic. Research report RR-5406, INRIA, December 2004.
Alternative links: [HAL-Inria / HAL-CCSd] [abstract]
[DinLef2000a]
F. de Dinechin and V. Lefèvre. Constant multiplier for FPGAs. In Second International Workshop on Engineering of Reconfigurable Hardware/Software Objects (ENREGLE 2000), Monte Carlo Resort, Las Vegas, Nevada, USA, June 2000. Also available as LIP research report 2000-18.
Alternative link: [postscript]
[DinLef2000b]
F. de Dinechin and V. Lefèvre. Constant multiplier for FPGAs. Research report RR2000-18, Laboratoire de l'Informatique du Parallélisme, Lyon, France, May 2000.
Alternative link: [abstract]
[FHLPZ2005a]
L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier and P. Zimmermann. MPFR: a multiple-precision binary floating-point library with correct rounding. Research report RR-5753, INRIA, November 2005.
Alternative links: [HAL-Inria / HAL-CCSd] [postscript] [PDF] [postscript] [PDF] [abstract]
[FHLPZ2006a]
L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier and P. Zimmermann. MPFR: a multiple-precision binary floating-point library with correct rounding. ACM Transactions on Mathematical Software, 33(2), June 2007.
DOI: 10.1145/1236463.1236468
Alternative link: [HAL-Inria / HAL-CCSd]
[GraiLefMul2014a]
S. Graillat, V. Lefèvre and J.-M. Muller. On the maximum relative error when computing integer powers by iterated multiplications in floating-point arithmetic. Numerical Algorithms, February 2015.
DOI: 10.1007/s11075-015-9967-8
Alternative link: [HAL-Inria / HAL-CCSd]
[HFPA2009a]
J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé and S. Torrès. Handbook of floating-point arithmetic. Birkhäuser Boston, 2010.
DOI: 10.1007/978-0-8176-4705-6
Alternative links: [HAL-Inria / HAL-CCSd] [online version]
[HLMRZ2001a]
G. Hanrot, V. Lefèvre, J.-M. Muller, N. Revol and P. Zimmermann. Some notes for a proposal for elementary function implementation in floating-point arithmetic. June 2001.
[HLSZ2007a]
G. Hanrot, V. Lefèvre, D. Stehlé and P. Zimmermann. Worst cases of a periodic function for large arguments. Research report RR-6106, INRIA, January 2007.
Alternative link: [HAL-Inria / HAL-CCSd]
[HLSZ2007b]
G. Hanrot, V. Lefèvre, D. Stehlé and P. Zimmermann. Worst cases of a periodic function for large arguments. In Peter Kornerup and Jean-Michel Muller, editor, Proceedings of the 18th IEEE Symposium on Computer Arithmetic, pages 133–140, Montpellier, France, June 2007. IEEE Computer Society Press, Los Alamitos, CA.
DOI: 10.1109/ARITH.2007.37
Alternative link: [HAL-Inria / HAL-CCSd]
[KLLLM2008a]
P. Kornerup, Ch. Lauter, V. Lefèvre, N. Louvet and J.-M. Muller. Computing correctly rounded integer powers in floating-point arithmetic. Research report RR2008-15, Laboratoire de l'Informatique du Parallélisme, Lyon, France, May 2008.
Alternative link: [HAL-Inria / HAL-CCSd]
[KLLLM2009a]
P. Kornerup, Ch. Lauter, V. Lefèvre, N. Louvet and J.-M. Muller. Computing correctly rounded integer powers in floating-point arithmetic. ACM Transactions on Mathematical Software, 37(1), January 2010.
DOI: 10.1145/1644001.1644005
Alternative link: [HAL-Inria / HAL-CCSd]
[KLLM2008a]
P. Kornerup, V. Lefèvre, N. Louvet and J.-M. Muller. On the computation of correctly-rounded sums. Research report RR2008-35, Laboratoire de l'Informatique du Parallélisme, Lyon, France, October 2008.
Alternative link: [HAL-Inria / HAL-CCSd]
[KLLM2009a]
P. Kornerup, V. Lefèvre, N. Louvet and J.-M. Muller. On the computation of correctly-rounded sums. In Proceedings of the 19th IEEE Symposium on Computer Arithmetic, pages 155–160, Portland, OR, USA, June 2009.
Alternative link: [HAL-Inria / HAL-CCSd]
[KLLM2010a]
P. Kornerup, V. Lefèvre, N. Louvet and J.-M. Muller. On the computation of correctly-rounded sums. Research report RR-7262, INRIA, Lyon, France, April 2010.
Alternative link: [HAL-Inria / HAL-CCSd]
[KLLM2011a]
P. Kornerup, V. Lefèvre, N. Louvet and J.-M. Muller. On the computation of correctly-rounded sums. IEEE Transactions on Computers, 61(3):289–298, March 2012. Prix La Recherche 2013.
DOI: 10.1109/TC.2011.27
Alternative links: [HAL-Inria / HAL-CCSd] [IEEE Computer Society]
[KLTZ2009a]
K. R. Ghazi, V. Lefèvre, P. Théveny and P. Zimmermann. Why and how to use arbitrary precision. Computing in Science and Engineering, 12(3):62–65, May 2010.
DOI: 10.1109/MCSE.2010.73
Alternative links: [HAL-Inria / HAL-CCSd] [IEEE Computer Society]
[KorLefMul2007a]
P. Kornerup, V. Lefèvre and J.-M. Muller. Computing integer powers in floating-point arithmetic. Research report RR2007-23, Laboratoire de l'Informatique du Parallélisme, Lyon, France, May 2007.
Alternative link: [HAL-Inria / HAL-CCSd]
[KorLefMul2007b]
P. Kornerup, V. Lefèvre and J.-M. Muller. Computing integer powers in floating-point arithmetic. In Proceedings of 41th Conference on signals, systems and computers, November 2007. IEEE Conference Publishing Services.
[LTDJMPR2010a]
V. Lefèvre, P. Théveny, F. de Dinechin, C.-P. Jeannerod, C. Mouilleron, D. Pfannholzer and N. Revol. LEMA: towards a language for reliable arithmetic. Research report RR-7258, INRIA, April 2010.
Alternative link: [HAL-Inria / HAL-CCSd]
[LTDJMPR2010b]
V. Lefèvre, P. Théveny, F. de Dinechin, C.-P. Jeannerod, C. Mouilleron, D. Pfannholzer and N. Revol. LEMA: towards a language for reliable arithmetic. ACM Communications in Computer Algebra, 44(2), June 2010. Emerging Trends Papers accepted for PLMMS 2010, L. Dixon and J. Davenport.
DOI: 10.1145/1838599.1838622
Alternative link: [HAL-Inria / HAL-CCSd]
[LauLef2007a]
Ch. Lauter and V. Lefèvre. An efficient rounding boundary test for pow(x,y) in double precision. Research report RR2007-36, Laboratoire de l'Informatique du Parallélisme, Lyon, France, September 2007.
Alternative link: [HAL-Inria / HAL-CCSd]
[LauLef2009a]
Ch. Lauter and V. Lefèvre. An efficient rounding boundary test for pow(x,y) in double precision. IEEE Transactions on Computers, 58(2):197–207, February 2009.
DOI: 10.1109/TC.2008.202
Alternative link: [HAL-Inria / HAL-CCSd]
[Lef1997a]
V. Lefèvre. An algorithm that computes a lower bound on the distance between a segment and Z2. Research report RR1997-18, Laboratoire de l'Informatique du Parallélisme, Lyon, France, June 1997.
Alternative links: [postscript] [abstract]
[Lef1999a]
V. Lefèvre. An algorithm that computes a lower bound on the distance between a segment and Z2. In Developments in Reliable Computing, pages 203–212. Kluwer, Dordrecht, Netherlands, 1999.
[Lef1999b]
V. Lefèvre. Multiplication by an integer constant. Research report RR1999-06, Laboratoire de l'Informatique du Parallélisme, Lyon, France, January 1999.
Alternative links: [postscript] [abstract]
[Lef2000a]
V. Lefèvre. Moyens arithmétiques pour un calcul fiable. PhD thesis, École Normale Supérieure de Lyon, Lyon, France, January 2000.
Alternative link: [postscript]
[Lef2001a]
V. Lefèvre. Multiplication by an integer constant. Research report RR-4192, INRIA, May 2001.
Alternative links: [HAL-Inria / HAL-CCSd] [postscript] [PDF] [postscript] [abstract]
[Lef2001b]
V. Lefèvre. Multiplication par une constante. Réseaux et Systèmes Répartis, Calculateurs Parallèles, 13(4–5):465–484, 2001.
Alternative link: [HAL-Inria / HAL-CCSd]
[Lef2002a]
V. Lefèvre. Multiplication by an integer constant: lower bounds on the code length. Research report RR-4493, INRIA, July 2002.
Alternative links: [HAL-Inria / HAL-CCSd] [postscript] [PDF] [postscript] [abstract]
[Lef2003a]
V. Lefèvre. Multiplication by an integer constant: lower bounds on the code length. In Proceedings of the 5th Conference on Real Numbers and Computers, pages 131–146, École Normale Supérieure de Lyon, France, September 2003.
Alternative links: [HAL-Inria / HAL-CCSd] [postscript] [PDF]
[Lef2004a]
V. Lefèvre. The generic multiple-precision floating-point addition with exact rounding (as in the MPFR library). In Proceedings of the 6th Conference on Real Numbers and Computers, pages 135–145, Dagstuhl, Germany, November 2004.
Alternative links: [HAL-Inria / HAL-CCSd] [postscript] [PDF] [PDF]
[Lef2005a]
V. Lefèvre. New results on the distance between a segment and Z2. Application to the exact rounding. In Paolo Montuschi and Eric Schwarz, editor, Proceedings of the 17th IEEE Symposium on Computer Arithmetic, pages 68–75, Cape Cod, MA, USA, June 2005. IEEE Computer Society Press, Los Alamitos, CA.
DOI: 10.1109/ARITH.2005.32
Alternative link: [HAL-Inria / HAL-CCSd]
[Lef2005b]
V. Lefèvre. The Euclidean division implemented with a floating-point division and a floor. Research report RR-5604, INRIA, June 2005.
Alternative links: [HAL-Inria / HAL-CCSd] [postscript] [PDF] [postscript] [PDF] [abstract]
[Lef2005c]
V. Lefèvre. The Euclidean division implemented with a floating-point multiplication and a floor. Preprint, July 2005.
Alternative links: [HAL-Inria / HAL-CCSd] [postscript] [PDF]
[Lef2011a]
V. Lefèvre. SIPE: small integer plus exponent. Research report RR-7832, INRIA, Lyon, France, December 2011.
Alternative link: [HAL-Inria / HAL-CCSd]
[Lef2011b]
V. Lefèvre. Generating a minimal interval arithmetic based on GNU MPFR. In Isaac E. Elishakoff and Vladik Kreinovich and Wolfram Luther and Evgenija D. Popova, editor, Uncertainty modeling and analysis with intervals: Foundations, tools, applications (Dagstuhl Seminar 11371), volume 1, page 43, Dagstuhl, Germany, December 2011. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. Abstract only.
DOI: 10.4230/DagRep.1.9.26
Alternative link: [HAL-Inria / HAL-CCSd]
[Lef2013a]
V. Lefèvre. SIPE: small integer plus exponent. In Alberto Nannarelli and Peter-Michael Seidel and Ping Tak Peter Tang, editor, Proceedings of the 21th IEEE Symposium on Computer Arithmetic, pages 99–106, Austin, Texas, USA, April 2013.
DOI: 10.1109/ARITH.2013.22
Alternative links: [HAL-Inria / HAL-CCSd] [IEEE Computer Society]
[Lef2013b]
V. Lefèvre. Sipe: a mini-library for very low precision computations with correct rounding. Preprint, 2013.
Alternative link: [HAL-Inria / HAL-CCSd]
[LefMul1999a]
V. Lefèvre and J.-M. Muller. Table methods for the elementary functions. In F.T. Luk, editor, Proceedings of the SPIE — The International Society for Optical Engineering, volume 3807, pages 43–49, Denver, Colorado, 1999.
[LefMul2000a]
V. Lefèvre and J.-M. Muller. On-the-fly range reduction. Research report RR2000-34, Laboratoire de l'Informatique du Parallélisme, Lyon, France, November 2000.
Alternative links: [HAL-Inria / HAL-CCSd] [postscript] [abstract]
[LefMul2000b]
V. Lefèvre and J.-M. Muller. Worst cases for correct rounding of the elementary functions in double precision. Research report RR2000-35, Laboratoire de l'Informatique du Parallélisme, Lyon, France, November 2000.
Alternative links: [HAL-Inria / HAL-CCSd] [postscript] [abstract]
[LefMul2000c]
V. Lefèvre and J.-M. Muller. On-the-fly range reduction. In SPIE's International Symposium on Optical Science and Technology, San Diego, CA, August 2000.
[LefMul2000d]
V. Lefèvre and J.-M. Muller. L'erreur en arithmétique des ordinateurs. Le Temps des Savoirs, (2):147–157, October 2000.
[LefMul2001a]
V. Lefèvre and J.-M. Muller. Worst cases for correct rounding of the elementary functions in double precision. In Neil Burgess and Luigi Ciminiera, editor, Proceedings of the 15th IEEE Symposium on Computer Arithmetic, pages 111–118, Vail, Colorado, 2001. IEEE Computer Society Press, Los Alamitos, CA.
DOI: 10.1109/ARITH.2001.930110
Alternative links: [HAL-Inria / HAL-CCSd] [IEEE Computer Society]
[LefMul2001b]
V. Lefèvre and J.-M. Muller. On-the-fly range reduction. Journal of VLSI Signal Processing, 33(1):31–35, January 2003.
DOI: 10.1023/A:1021137717282
Alternative link: [HAL-Inria / HAL-CCSd]
[LefMul2007a]
V. Lefèvre and J.-M. Muller. Some notes on the possible under/overflow of the most common elementary functions. May 2007.
Alternative link: [HAL-Inria / HAL-CCSd]
[LefMul2009a]
V. Lefèvre and J.-M. Muller. Erreurs en arithmétique des ordinateurs. Images des mathématiques, June 2009.
Alternative link: [HAL-Inria / HAL-CCSd]
[LefMulTis1997a]
V. Lefèvre, J.-M. Muller and A. Tisserand. Towards correctly rounded transcendentals. In Proceedings of the 13th IEEE Symposium on Computer Arithmetic, Asilomar, USA, 1997. IEEE Computer Society Press, Los Alamitos, CA.
DOI: 10.1109/ARITH.1997.614888
Alternative link: [IEEE Computer Society]
[LefMulTis1998a]
V. Lefèvre, J.-M. Muller and A. Tisserand. The table maker's dilemma. Research report RR1998-12, Laboratoire de l'Informatique du Parallélisme, Lyon, France, February 1998.
Alternative links: [postscript] [abstract]
[LefMulTis1998b]
V. Lefèvre, J.-M. Muller and A. Tisserand. Towards correctly rounded transcendentals. IEEE Transactions on Computers, 47(11):1235–1243, November 1998.
[LefSteZim2006a]
V. Lefèvre, D. Stehlé and P. Zimmermann. Worst cases for the exponential function in the IEEE 754r decimal64 format. In Reliable Implementation of Real Number Algorithms: Theory and Practice, volume 5045, pages 114–126, 2008. Springer-Verlag.
DOI: 10.1007/978-3-540-85521-7_7
Alternative links: [HAL-Inria / HAL-CCSd] [online version] [abstract]
[LefZim2004a]
V. Lefèvre and P. Zimmermann. Arithmétique flottante. Research report RR-5105, INRIA, February 2004.
Alternative links: [HAL-Inria / HAL-CCSd] [postscript] [PDF] [postscript] [abstract]
[MPFR]
G. Hanrot, V. Lefèvre, P. Pélissier and P. Zimmermann. The MPFR library. 2005.
[SteLefZim2002a]
D. Stehlé, V. Lefèvre and P. Zimmermann. Worst cases and lattice reduction. Research report RR-4586, INRIA, October 2002.
Alternative links: [HAL-Inria / HAL-CCSd] [postscript] [abstract]
[SteLefZim2003a]
D. Stehlé, V. Lefèvre and P. Zimmermann. Worst cases and lattice reduction. In Jean-Claude Bajard and Michael Schulte, editor, Proceedings of the 16th IEEE Symposium on Computer Arithmetic, pages 142–147, Santiago de Compostela, Spain, 2003. IEEE Computer Society Press, Los Alamitos, CA.
DOI: 10.1109/ARITH.2003.1207672
Alternative links: [HAL-Inria / HAL-CCSd] [IEEE Computer Society]
[SteLefZim2004a]
D. Stehlé, V. Lefèvre and P. Zimmermann. Searching worst cases of a one-variable function using lattice reduction. IEEE Transactions on Computers, 54(3):340–346, March 2005.
Alternative link: [HAL-Inria / HAL-CCSd]

Notes on the HTTP Negotiation

When a paper is available in several formats, the chosen format for the main link will be the one your browser will ask via the preferences declared in the Accept HTTP header. Remember to configure your browser according to your preferences, if it allows it! For Mozilla, you can open about:config and modify the value of network.http.accept.default.

Back to the list of my publications.



webmaster@vinc17.org