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Abstract—The correct rounding of the function pow : (z,y) —
z¥ is currently based on Ziv’s iterative approximation process. In
order to ensure its termination, cases when zV falls on a rounding
boundary must be filtered out. Such rounding boundaries are
floating-point numbers and midpoints between two consecutive
floating-point numbers.

Detecting rounding boundaries for pow is a difficult problem.
Previous approaches use repeated square root extraction followed
by repeated square and multiply. This article presents a new
rounding boundary test for pow in double precision which
reduces this to a few comparisons with pre-computed constants.
These constants are deduced from worst cases for the Table
Maker’s Dilemma, searched over a small subset of the input
domain. This is a novel use of such worst-case bounds.

The resulting algorithm has been designed for a fast-on-
average correctly rounded implementation of pow, considering
the scarcity of rounding boundary cases. It does not stall
average computations for rounding boundary detection. The
article includes its correctness proof and experimental results.

Index Terms—Afloating-point arithmetic, correct rounding,
power function.

I. INTRODUCTION

ORRECT rounding of elementary functions f : R — R

such as exp, sin, log,, extends bit-by-bit portability
of the IEEE 754 standard for binary floating point arith-
metic [[1]. Correct rounding means returning a floating-point
result rounded as if infinite intermediate precision were used
to evaluate f. Its importance, its impact and, in particular, its
feasibility have been shown in the last years [2]], [3], [4], [5],
6], [71.

Correctly rounding implementations [8], [4]], [2], [9] offer-
ing high performance currently rely on two main approaches,
that can be used together. In the first technique due to Ziv, an
iterative process increases the accuracy of an approximation to
the given function. Eventually, it can be ensured that rounding
the approximation is equivalent to rounding the exact value [2],
[3]. In the second approach, the worst-case accuracy in Ziv’s
iteration is pre-calculated for some target precision such as
IEEE 754 double precision [7]], [[10], so that not only average
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but also worst-case performance can be brought to a high
level [5], [6].

In order to guarantee the termination of Ziv’s iterative
process, it is necessary to detect cases when the image f(z) of
a function lies exactly on a so-called rounding boundary [2],
[3]], [L1]. A rounding boundary is a point where the rounded
value abruptly changes: values less than the boundary are
rounded downward and values greater than it are rounded
upward. Special rules, like the ties-to-even rule of the IEEE
754 standard, apply if the value lies exactly on the boundary.

For common elementary, transcendental functions, such as
for example exp, sin, log,, this detection is easy: rounding
boundaries are rational numbers, whereas the images of these
functions on rational values are transcendental except for a
few well-known arguments [3], [12]. Thus, only few values
remain to be filtered. For instance, exp(x) is rational only for
x = 0 and log,(x) is rational only for integer powers of 2.

For the function pow : (z,y) — ¥ the situation is different.
First, the function is bivariate. This currently makes worst-
case accuracy computation unfeasible for double precision in
reasonable time. Current techniques are confronted by a com-
binational explosion [[10], [13]. Hence, the correct rounding
of pow is based only on Ziv’s iterative approach [L1], [9],
[2]. Second, the images pow(z,y) = z¥ potentially fall on
rounding boundaries. Consider for example 1296%7° = 216.
Nevertheless, the rounding boundary cases (z,y) — in a given
precision — form a complicated set. For example, x¥ is rational
for x rational and y integer or, more difficult, for x a repeatedly
perfect square and y the reciprocal of the corresponding
integer power of 2. However, not all rationals are rounding
boundaries. The detection of these rounding boundary cases
of pow requires a particular algorithm.

This paper addresses this rounding boundary detection prob-
lem for pow in binary floating-point arithmetic as specified by
the IEEE 754 standard. The problem is considered for IEEE
754 double precision and all rounding modes defined by the
standard: the default mode round-to-nearest-ties-to-even and
the three directed rounding modes [[1].

The problem is not new: different detection algorithms have
already been proposed in the MPFR library [4], [L1], in Sun’s
libmcr [9] and in IBM’s (Ziv’s) 1libultim that is now
integrated in the GNU C Library (gl ibcﬂ [2]. In all these
three previous approaches, the detection algorithm performs
relatively expensive computations at run-time. Complex tests
ensure that these computations are all error-free. A novelty
in our approach is that these computations are replaced with

lavailable at http://www.gnu.org/software/libc/
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simple tests with constants and approximations that are already
available in an implementation of pow. Typically we replace
a repeated square root extraction and testing process followed
with a square and multiply loop by eight comparisons with
pre-computed constants.

A second novelty in our work is how these constants can be
pre-computed. Surely, worst-case bounds for the correct round-
ing cannot be computed for the function pow on its whole
definition domain in double precision in reasonable time [10],
[L3]. Nevertheless, worst-case bounds can be computed for
a subset of the domain [[14]. This subset principally contains
arguments (z,n) of integer powers =™ of a double precision
number = for small integers n and pre-images (x,2~f - n)
of small 27-th roots of a double precisiogl number x raised
to some very small integer power: (xTF) . We observe and
prove that all cases when z¥ falls on a rounding boundary must
lie in such a small subset of the double precision numbers.
Further, we show that we can detect rounding boundary
cases using approximations better than the worst-case: if an
approximation to x¥ is provably twice as near to a rounding
boundary as an inexact case can ever be, the true value of x¥
is exactly on the rounding boundary.

The purpose of the design of our algorithm has not been just
a new application of worst-case search results. The algorithm
has been designed as a basic brick for a fast correctly rounded
implementation of pow. We show that in random input, round-
ing boundary cases are rare. This particularly holds for the
default rounding mode. Our algorithm allows one to get high
average performance by not stalling not-rounding-boundary-
cases on the critical path and to pitch on the rounding boundary
cases essentially for free after the second iteration in Ziv’s
process.

This paper is organized as follows: In Section[[l, we analyze
previous correct rounding implementations of pow. After
fixing notations (Section |[[-A), we give an overview on how
Ziv’s iteration technique works and why its termination is con-
ditioned by detecting rounding boundary cases (Section [[I-B).
We analyze then the general, previously proposed techniques
for rounding boundary detection for pow (Section [[I-C) before
sketching the algorithms in Sun’s 1ibmcr, Ziv’'s 1ibultim
and MPFR (Section [[I-D). We expose our approach in Sec-
tion We show here analyses of the number of rounding
boundary cases (Section [[lI-A). We expose our technique using
worst-cases (Section and show what algorithm can be
used for computing these worst cases (Section [[II-C). Finally
we present our algorithm (Section [[II-D). We give a sketch of
the correctness proof of the algorithm in Section Before
concluding in Section we show performance results in
Section [V]

II. CORRECT ROUNDING IMPLEMENTATIONS OF pow
A. Notations

Throughout this paper we work with binary floating point
numbers. In our formalization [15]] a floating point number 27
m consists of an exponent F and a significand m, both signed
integers. We make abstraction from special data like infinities

or Not-a-Numbers (NaNs). We denote the set of floating-point
numbers of precision k£ with unbounded exponent range as:

Fo = {28 - m|E€Z melZ 2F1 <|m| <2F -1}
u{0} .
IEEE 754 double precision floating-point numbers have a
bounded exponent range [1l]. They correspond to the set

D={2F-m|EecZ —1074 < E <971,
meZ, |m<2%—-1}.

Remark that D C Fg3 [I15].

We consider the IEEE 754 rounding modes round-down,
round-up, round-towards-zero and the default mode round-to-
nearest-ties-to-even [1]]. The symbol ¢, will denote one of the
four rounding functions to Fy, ¢; : R — Fj. The symbol oy,
will always denote round-to-nearest to I, (and will only be
used for k£ = 54).

Rounding functions are discontinuous. The discontinuity
points of a rounding function are the rounding boundaries
of the corresponding rounding mode. For the modes <y
round-down, round-up and round-towards-zero, the set of the
rounding boundaries is the set Fy [7]. We refer to such a case
as an exact case. For the round-to-nearest mode ¢, the set
of the rounding boundaries is formed by the midpoints of two
consecutive floating-point numbers in Iy [7]. We refer to such
a case as a midpoint case.

The midpoints of numbers in Fj, are numbers in Fj; with
odd significand. Since 'y, C Fy1, the rounding boundaries of
all considered rounding-modes ¢, lie in Fg ;. Testing whether
pow(z,y) is a rounding boundary case in double precision
hence means computing the predicate

RB(z,y) = (2¥ € Fs5y) .

B. The Table Maker’s Dilemma and Ziv’s correct rounding
technique

The correct rounding of a non-rational function f is subject
to the Table Maker’s Dilemma [3]]. The unknown, exact value
2 = f(x) of the function is approximated by z with an error
d. It is only known that £ lies in an interval Z = [z — §; z + ¢
around the approximation z. If no rounding boundary lies in
Z, all values Z € Z round to the same value ¢ (Z). Hence,
rounding the approximation z gives to correct rounding:
©(2) = o(z) (see Fig. [L(@). On the other hand, if a rounding
boundary lies in Z, there is a doubt: some values Z € Z round
up, other values Z round down (see Fig. [I(b)) [3].

Ziv’s correct rounding technique [2] iteratively decreases the
approximation error § when the rounding cannot be decided.
If the exact value Z is not a rounding boundary, there is some
non-zero distance between Z and the nearest boundary (see
Fig. [L(a)). With decreasing 4, the width of Z = [z — §; 2 + ]
eventually becomes less than this distance and correct round-
ing becomes possible. In the case when Z lies on a rounding
boundary, the iteration does not terminate. With a non-zero
approximation error §, there will be decreasingly smaller
intervals Z around the rounding boundary Z. Nevertheless,
they will never reach Z. The iteration repeatedly misinterprets
a rounding boundary case as a hard-to-round case (i.e. a



Exact value 2

| I ——
‘ N

Approximation z Interval Z

Rounding boundary

(a) Easy to round case

Exact value 2

1
o~

Approximation z Interval Z

Rounding boundary

(b) Hard to round case

Figure 1. The Table Maker’s Dilemma. Z = [z — §; z + 4].

non-rounding-boundary case whose image is very close to a
rounding boundary). Hence, rounding boundary cases must be
filtered out [2].

High performance is obtained in the average case with this
technique. Values 2 = f(z) can be considered as randomly
distributed around rounding boundaries [2]], [3], [S)], [16]]. On
average, the first fast approximation step suffices for correct
rounding. Nevertheless, the worst-case timing of Ziv’s iteration
remains unknown. In order to ensure this worst-case timing,
the number of iterations must be statically bounded. This
is possible if the smallest, worst-case distance between a
value 2 = f(z) and the nearest rounding boundary can
be computed. This is currently feasible for most univariate
elementary functions in double precision. For the bivariate
pow : (z,y) — z¥ function, such worst-case researches are
currently unfeasible in reasonable time for the whole double
precision definition range [13], [10], [14)]. In consequence,
Ziv’s iteration process must be used with an a-priori unknown
number of iterations. This implies the necessity of detecting
rounding boundaries after some number of iterations in the
process or before it (see Fig. [I(b)).

Using approximations for some of the computations needed
for rounding boundary detection is nevertheless possible. De-
tecting rounding boundary cases in double precision means
computing the predicate RB(x,y) = (¥ € F54). Let 054 be
round-to-nearest to 54 bits of precision. Since oz4(z¥) € Fsy
holds, rounding boundary detection means testing whether
a¥ = og4(a¥). The rounding boundary detection reduces thus
to some sort of equality test. Here, the following observation
is important: Let ¢53 be a rounding to 53 bits in any rounding
mode. The rounding os4(z¥) is never confronted by the Table
Maker’s Dilemma when the rounding ¢s3(x¥) is confronted
by the Table Maker’s Dilemma: since o53(z¥) is confronted
by the Table Maker’s Dilemma, x¥ lies near or exactly on a
rounding boundary, which is a floating-point number in Fs,.
In consequence, the value z¥ is far from the middle of two
consecutive floating-point numbers in F54 and can easily be

rounded to the nearest in F54 (see Fig. .
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Figure 2. Using an approximation in the detection.

A rounding boundary detection test launched after a first
step in Ziv’s iteration may thus use oz4(a¥ 4 §) = og4(z¥)
for the test whether 2¥ = o54(x¥). Further, once a rounding
boundary case has been detected, i.e. x¥ o54(zY), the
correctly rounded value os3(z¥) may be deduced from the
approximation as ¢53(o54(2¥ 4 48)). Although the report [11]
alludes this technique, it does not appear to be used in any
known previous implementation.

C. General techniques for rounding boundary cases of pow

All previous rounding boundary tests for the function pow :
(z,y) — Y use some basic properties of the arguments
z,y € Fs3 and the potential rounding boundary z¥ € 4.
A variant of the corresponding algorithm with a proof sketch
is already outlined in [[L1]. These basic properties imply some
branching scheme. Typically the sign of some values and their
exponents are tested. We reuse this preliminary branching
scheme in our algorithm. Further, the basic properties yield
bounds on particular values. In previous approaches, these
bounds mainly guarantee the termination of an iteration. Our
algorithm explicitly tests against these bounds. They further
determine a domain, on which constants must be pre-computed
for our algorithm. In Section |[V| we therefore extend the proof
sketch given in [11]], in particular by proving such bounds.

Let us now consider these basic properties of rounding
boundary cases z¥. Let z be a rounding boundary near zY,
i.e. z = o54(x¥). Remark that previous approaches do not
explicitly compute z but merely suppose it to exist. The
numbers z,y and z are floating-point numbers. Without lack
of generality, x can be supposed to be positive. The numbers
x,y and z can hence be written

T 2F . m
= 2F.n
2 = 29k

where £, F,G € Z, m,k € 2N+ 1 and n € 2Z + 1.
Testing a rounding boundary case, i.e. computing
RB(z,y) = (z¥ = os4(2¥)) means thus checking if

22F~E-n 2P _ 2G I

-m

Since m is odd (see Section [[V), this is equivalent to testing
the two conditions

m? " =k (1)
o '\E.n = G. ()



A distinction must now be made depending on the sign of n.

If n is negative, m2 ™ = k can be written
2F 1
m™" ==
() = 1

Since m,n,k and F are integers and m,—n,k > 0, this
implies with the second condition that x must be an integer
power of 2 and that £'-y must be an integer G (see Section
for more details). This can easily be tested for in IEEE 754
double precision. Conversely, if these conditions are satisfied,
then z¥ is an integer power of two, i.e. one knows that z¥ is
an exact case (or an underflow or overflow).

On the other hand, if n is positive, the situation is more
complicated. There are two alternatives depending on the sign
of F. If F' is negative, m2" ™ =k can be written

()

Since n is odd and 27 is even (see Section , this reduces
to testing whether there exists an integer j € N such that

TVYm o= j 3)
" = k. )

The test whether 2 y/m € N is performed by previous
approaches as repeated square root extraction and testing:
since m is odd,

*UmeN = *"\/ymeN
= "VUmeN A m =ymeN.

The condition v/m € N is mainly tested by taking the floating-
point square root of m and checking whether it is exact,
i.e. produced without round-off. The maximum number of
iterations can be deduced from the fact that m has at most 53
significant bits. Since upon each exact square root extraction
the number of significant bits in m is halved at each step,
no more than 5 iterations are possible: 53 < 2571 (see
Section [[V). While the bound F' > —5 is still important in
our algorithm, the square root extraction loop is no longer
needed.

If F' is positive or zero, m

mt =k

F .
2" — [k can be written

where t = 2F" . n = y € N. In consequence, independently of
the sign of I, the algorithm must test either m? = k or j™ = k
with m,n, j,t, k € N. Let u® = k be the test to be performed.
Since k is bounded above by 2°* — 1, the upper bound on s
depends on u. Previous approaches store these bounds in a
table or branching structure. Eventually, v® is computed by a
multiply loop. In our approach, we only use a weaker bound:
s < 34 because u > 3 (see Section [[V]).

D. Previous correctly rounded implementations of pow

All previous correctly rounded implementations of pow,
in Sun’s libmcr, in Ziv’s 1libultim and in MPFR, use
a combination of Ziv’s correct rounding technique and the
general techniques for detecting rounding boundary cases.
Their control flows are illustrated in Fig. 3] The illustrations

have been obtained by analysis of the source code because
documentation is only partially available [2], [9], [4], [L1].

The implementation in Sun’s 1ibmcr uses the most conser-
vative approach to rounding boundary filtering (see Fig. [3(a)).
Before Ziv’s iteration process is started, all rounding boundary
cases are filtered out. Arguments run through nested branches
before possibly being tested in the repeated square root ex-
traction loop. The exactness of each square root extraction is
tested by clearing and checking the IEEE 754 inexact flag. If a
case is determined to be a rounding boundary case, the result
of pow is computed by a square and multiply loop. Midpoint
cases get correctly rounded by the last multiplication [9]. If
a case does not lie on a rounding boundary, Ziv’s iteration
process is launched without reuse of the intermediate results
produced in the rounding boundary test.

Branches and, in particular, IEEE 754 flag access are expen-
sive operations on current processors because of pipeline stalls.
In the libmcr approach, some of the rounding boundary
detection branches get executed independently whether the
case is a rounding boundary case or not. Even if average,
not-rounding-boundary cases do not run through every stage
of the nested testing structure, the critical path gets delayed.

Ziv’s approach in 1ibultim accounts for higher average
performance on the critical path. The rounding boundary
detection is performed only after two iterations of Ziv’s
correctly rounding process (see Fig. [3(D)). As probability
arguments [2[], (S]], [16] show, average cases are thus returned
faster. In consequence, the rounding boundary test is executed
on average for fewer inputs. Its probabilistic relative cost
decreases.

Although the approach in libultim allows for higher
average performance than the approach in l1ibmcr, it is still
not optimal: the rounding boundary detection is delayed until
after the second approximation step in Ziv’s iteration. How-
ever, the approximation is used neither for faster rejection of
not-rounding-boundary cases nor for faster computation of the
value of rounding boundary cases. Although an approximation
to ¥ is available and could yield o53(2z¥) by ¢53(054(2¥)) as
explained above, Ziv’s implementation recomputes rounding
boundary cases ¥ by repeated multiplication. This approach
delays thus rounding boundary cases more than necessary.

The implementation of pow in MPFR modifies the approach
of pow in 1ibultim [4], [11]]. Some special cases, i.e. y € Z,
x=2F FEcZandx=2F, y E cZ, are filtered out before
starting a Ziv iteration. Rounding boundary handling is simple
for these special cases. For the remaining cases, an approach
similar to the one in 1ibultim is used: the first step of Ziv’s
iteration is executed. This allows for fast average performance
for not-rounding-boundary cases. Rounding boundary test is
then performed by repeated testing of perfect squares. MPFR
relies here on a test implemented in the GNU Multi Precision
Library (GMP Once a rounding boundary case is detected,
the value of x¥ is computed by the integer power function,
using a square and multiply process.

In the comparisons of the different approaches, the fol-
lowing important point must be accounted for. The libraries

2available at http://gmplib.org/
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Figure 3. Previous approaches.

libmcr and 1ibultim are targeted to double precision [2],
[9]. The MPFR library supports multiple-precision compu-
tations [4)], [11]. Algorithms for multiple-precision should
have the best known asymptotic complexity in the average
case. In contrast, algorithms for a given fixed precision, like
double precision, may be optimized not in terms of asymptotic
complexity but in terms of latency in cycles. In this article,
we aim at speeding up an implementation of pow in double
precision. The MPFR implementation cannot meaningfully be
compared to the double precision implementations in every
aspect but may be source of inspiration.

III. NEW APPROACH FOR pow
A. Number of rounding boundary cases

In the continuation of the successive improvements in Ziv’s
libultim and MPFR, we want to increase average perfor-
mance on both not-rounding-boundary cases and rounding-
boundary cases. For average case analysis and improvement,

information on the probabilities of the different types of inputs
is necessary [2]], [S]. The case counts given in this section
have been obtained mainly on the base of the properties of
rounding boundary cases presented in Section The cases
have been counted using ad-hoc, quick-and-dirty algorithms
that are outside the scope of this article.

In double precision, the function pow : (z,y) — 2Y,
z,y € D has about 2''2 regular arguments, the irregular
ones being those which produce particular output and can
easily be filtered out early in the function implementation.
Typically, irregular arguments produce NaN, an underflow, an
overflow, or an exact result very close to 1 (i.e. which will be
rounded to 1 in round-to-nearest). The count can be verified
by considering all exponents of x and computing bounds on
y for each exponent.

Let us now consider the number of rounding boundary cases
separating them into exact and midpoint cases. Some rounding
boundary cases are trivial. Typically, the cases y =1 or y = 2



are handled by ad-hoc filtering: 2* = 2 and 22 = x - x. We
do not consider these two trivial cases. The number of exact
cases is slightly greater than the number of mid-point cases:
there are roughly 227 non-trivial exact cases and roughly 225
midpoint cases. The conditions for an input (z,y) to be a
rounding boundary case detailed in Section [[I-C] are slightly
weaker for exact than for midpoint cases. Moreover round-
to-nearest is the IEEE 754 default rounding mode [1]. In the
following discussion, we therefore concentrate on midpoint
cases that are associated with that mode.

There are 37500822 ~ 2255 midpoint cases =¥, y # 2,
in double precision. When additionally excluding y = 3, the
count drops to 19066760 ~ 2242 cases. Further excluding
even y = 4, 18596893 ~ 224! cases remain. Remark that
still 18431732 of these cases are formed by the case y = %
In contrast, excluding y = % is difficult, because it would
currently imply usage of a square root extraction which is an
expensive operation on current pipelined processors.

For uniformly distributed regular arguments (x,y), the
probability for an argument to be a midpoint case with y # 2
is approximately Pogom = 221% = 2787 By probabilistic
arguments [2], [Sl], [[16]], this can be related to the probability
of a not-rounding-boundary, hard-to-round case. It would be a
case for which an accuracy corresponding to 53+1+87 = 141
bits is necessary in Ziv’s iteration in order to ensure correct
rounding. In Ziv’s 1ibultim, the rounding boundary detec-
tion seems thus to be executed still too early after the second
approximation step giving about 80 significant bits [S)], [2].
However, remark that this argument is based on a uniformity
hypothesis on the inputs that might not be satisfied.

Executing the rounding boundary detection after a later
Ziv’s iteration step has negative impact on the performance
on rounding boundary cases. One might think of an appli-
cation using pow on a set of inputs that are all rounding
boundary cases. Here the following observation can be made:
On uniformly distributed arguments (x,y) that are non-trivial
midpoint rounding boundary cases, the probability for y being
y=3ory=4is p, = 05228096893 ~ 50.4%. We
propose thus to filter not only y = 2 but also y = 3 and y = 4
before starting Ziv’s iteration process. The detection of the
remaining rounding boundary cases can then be performed
after an iteration step with an accuracy of about 120 valid
bits. The handling of arguments y = 2, y = 3 and y = 4 can
be done essentially for free in current pipelined processors.
The impact of late rounding boundary detection on rounding
boundary case performance drops to the half. Section [V] gives
the measured performance of this approach.

B. Using worst-case bounds for rounding boundary detection

The impact of rounding boundary detection on the whole
performance of a correctly rounded implementation of pow
can be decreased by simplifying the detection algorithm. Let
us now see how the repeated square root extraction and square
and multiply process can be avoided completely.

Suppose that worst-case information is available. Let us
show how rounding boundary cases can be discerned from not-
rounding-boundary cases merely using an approximation, that

is needed anyway in Ziv’s correct rounding iteration process.
On all regular double precision inputs (x,y) € D?, that are
not rounding boundary cases, Ziv’s iteration will be able to
provide a correctly rounded result in any rounding mode after
approximating £ = a¥ by z = a¥ - (14 ¢) with a relative
error € not greater than some bound 2, i.e. |¢| < g, where € is
the worst-case of the Table Maker’s Dilemma [3], [13]], [LLO].
Hence, whatever interval between two consecutive floating-
point numbers is considered, not-rounding-boundary cases x¥
may fall in some range between the floating-point numbers
and their midpoint. However, they cannot be nearer to them
than z¥ -€. Around floating-point numbers and their midpoints
there are gaps in which no numbers z¥, x,y € D, can fall.
See Fig. |4 for an illustration. Let Z = z¥ now be a rounding
boundary case, for example a midpoint case. Let z be an
approximation to Z with a relative error ¢ less than half the
worst-case error g, i.e. z = z¥ - (1+¢), with |¢] < % . E.
The approximation z will then lie in the gap — where no not-
rounding-boundary cases may lie because of the worst-case
bound. More precisely, the approximation interval Z around
an approximation z to a rounding boundary case will not
intersect with any approximation interval corresponding to a
not-rounding-boundary case.

Rounding boundary detection can thus be performed as fol-
lows: after approximating =¥ with an accuracy slightly higher
than the worst-case, the algorithm simply checks whether the
approximation falls in the gap or not. This test is exactly the
same as the test for checking whether an approximation can be
correctly rounded or not in Ziv’s iteration [2]], [8], [S]. It must
be performed anyway in an approach using Ziv’s iteration. If
worst-case information were available for the function pow on
its whole double precision definition range, rounding boundary
detection would be essentially for free.

It is currently unfeasible to compute worst-cases for pow
in double precision [10], [13]. Nevertheless, our rounding
boundary detection approach still works. We define a subset S
of the double precision numbers D?. This subset reflects the
bounds on rounding boundary cases presented in Section [[I-C|

S = {(z,y) eD?|yeN, 2<y <34}
U {(m,2fn)eD? | FeZ —-5<F <0,
ne2N+1, 1 <n <34, m€2N+1}.

As shown in Section [[V] all rounding boundary cases of
pow in double precision lie in S. The rounding boundary
test can thus refute rounding boundary cases immediately if
some (z,y) € D? does not lie in S. Further, it is possible to
compute the worst-cases of z¥ for inputs (x,y) € S [13], [L0].
For the first part of S, where y € N, worst-case information
for the integer powers of a double precision number can be
reused [14]; worst-case information for the k-th roots was
obtained at the same time and can be used for the second part
with n = 1. The second part with 3 < n < 33 (n odd) has
about 3.6 - 1017 elements, which has been a feasible number
of inputs; Section describes how the worst case has been
found. For inputs in the subset, (x,y) € S, rounding boundary
detection can thus be performed using worst-case information.

The following worst case for correct rounding to dou-
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Figure 4. Using worst-case information for rounding boundary cases.

ble precision has been found in the subset S: for x
1988580363009869, y = 2-%.5, 2¥ reads in binary

1110101111001110.01010011000011000

10111001011000110001 1 0...0111....
60

xY

. _ (Y)Y B
The worst-case accuracy € is thus € = ’W > 2~ 14

Let us now see how these worst cases have been computed.

C. Searching for the worst case of m®

If we write a = 2%, the problem of finding the worst case
of the second part of S with n > 3 is reduced to searching for
the worst case of m® with m € DN (2N + 1) for each of the
80 values of a.

The algorithms to search for the worst cases, described
in [7], [10], [13], can be used only if the tested function
can be approximated by small-degree polynomials on large
enough intervals (with an error small enough to filter out most
input numbers with these algorithms). However, if we consider
ho(m) = m® for the first values of m, the function h, cannot
be approximated by a small-degree polynomial. Fortunately, as
m goes larger, the fast algorithms quickly start to be applicable
and become more and more efficient, so that the whole search
is possible in a reasonable time. Still, this makes the split into
small intervals more complex, as shown below.

We sought to reuse existing code as much as possible, not
only the implementation of the core algorithms [[13]], but the
whole toolchain, which includes the split into small intervals,
automatic error analysis (with guaranteed error bounds), gen-
eration of efficient code and the parallelization. So, we had
to reduce the problem to the search of the worst cases of a
univariate function with both input and output in some fixed

precision.

The input number m takes 2°2 values: 1, 3, 5, ..., 253 — 1,
so one can write x = 1 + k-27°2, with k = mgl. As k takes
the values 0, 1, 2, ..., 252 — 1, the corresponding set of the

values of z is DN [1,2).

1B
7

Midpoint case

Approximation Approximation interval Z

Since # = 1+ (m —1)/2%, one has m = 1+ (x — 1) - 2°3,
thus the tested function is fo(z) = (14 (v — 1) -25%).

The input interval [1,2) was split in the following way
(probably not optimal, but this choice was sufficient):

1) [1+278,2) split into 8160 intervals of width 2713;

2) [1_?»8.2*15, 1+ 278) split into 1016 intervals of width
3) [21 ;&;’2_22, 1 + 2715) split into 254 intervals of width
4) [21 ;B ;2’29, 1 + 2722) split into 254 intervals of width
5) [21 ;—7 ;2’36,1 +2729) split into 254 intervals of width
6) [21 L ;2_43, 1 + 273%) split into 254 intervals of width
7) [21 5+1 ;2’50,1 + 2743) split into 254 intervals of width
8) AQL Val;ues of [1,1+2759).

The search ran for 25 days on a small network of machines.
The SLZ algorithm [10] was not used because it is less
interesting for double precision, but also because the current
implementation is not part of the mentioned toolchain.

D. Detection algorithm

Our rounding boundary algorithm detectRoundingBound-
aryCase combines all previous elements for computing the
predicate RB(z,y) = (z¥ € Fs4). It is illustrated in Algo-
rithm [I

The algorithm takes x,y and an approximation z = z¥ -
(1+¢) in input. The accuracy e of this approximation must
be slightly better than the worst-case of the function pow in
the subset S. Typically, we choose |¢| < 27117, The algorithm
starts with rounding z to the nearest floating-point number
in Fsy, 2¢ - k = o54(2). As explained (see Section ,
this rounding is not subject to the Table Maker’s Dilemma if
the rounding ¢53(z) into D is. The algorithm performs then a
rounding test, i.e. it checks whether z is near or on a rounding



boundary. If the condition of this test, [2¢ - k — z| > 2~ 116 g
fulfilled, z¥ is far from a rounding boundary. It does not fall
in the gap around rounding boundaries. Hence, it cannot be a
rounding boundary; the algorithm returns false. The rounding
o53(2) of the approximation z already yields the correctly
rounded result o53(zY).

After this first test, the algorithm checks whether x is an
integer power of 2, i.e. z = 2. In this case, 2¥ can be a
rounding boundary case only if E -y € Z. The algorithm
responds appropriately. See Section for the correctness
proof in this particular case. If x is not an integer power of
2, the algorithm checks whether (z,y) lies in S or not. In
the case where (z,y) lies in S but y is not an integer, i.e.
it decomposes into y = 2 - n, where n € 2N + 1 with
negative F', the algorithm further checks whether not only
m2 ™ = k is satisfied but also E-y = G, respectively whether
k € 2Z + 1. This check is necessary in this case because the
test z¥ = 2 . k must be decomposed into E -y = G and
m2m =k (see Section . If one of the conditions, i.e.
(z,y) € Sor E-y =G, is not satisfied, the case cannot be a
rounding boundary case by the gap argument. The algorithm
responds immediately false in this case. Otherwise the case
must be a rounding boundary case; the algorithm returns true.

Input: c € D,z >0,y e D,y #0,y # 1
z such that z = 2¥ - (1 + ) with |g| < 2717,

Output: a predicate RB(z,y) = (z¥ € F54)
Let 2¢ - k = o54(2) such that G € Z, k € N;
if [2¢ -k — z’ > 27116 . > then return false;
if 3 € Z, = = 27 then

| if E -y € Z then return true else return false;
else

if y <0V y > 34 then return false;

Let F € Z, n € 2N + 1 such that 2" - n = y;

if n > 34 V F < —5 then return false;

if ' < 0 then
Let E € Z, m € 2N + 1 such that 2% - m = z;
if £ -y ¢ 7Z then return false;
if 26-FV . k ¢ 27 + 1 then return false;

end

return ftrue;

end

Algorithm 1: detectRoundingBoundaryCase

Our rounding boundary detection algorithm decomposes its
inputs  and y into z = 2¥ - m and y = 2F - n. This
operation seems to require an expensive loop for counting
the trailing zeros in the significand of the numbers. In fact,
previous approaches, for instance Sun’s libmcr and Ziv’s
libultim, use such a loop. Actually, techniques are knowrﬂ
for performing such a decomposition using only some logical
operations or a small table [17].

E. Correct rounding algorithm

Based on our analysis of the probability of rounding bound-
ary cases presented in Section and using our rounding
boundary detection algorithm, we propose the approach for
correctly rounding pow illustrated in Fig. [5]

3see hhttp://graphics.stanford.edu/~seander/bithacks.html
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Figure 5. New approach to a correctly rounded pow.

In our approach, the algorithm starts with filtering simple
cases such as y = 2 for any x and y = 3 or y = 4 for = on not
more than 21 bits. This filter can be performed while filtering
irregular arguments of the function. On pipelined processors,
the evaluation of z¥ in the general case can even already be
started. The cost of the filter is thus hidden inside the critical
path. The results of the special cases x2, 2> and z* can be
computed in an ad-hoc way. Since about half of the rounding
boundary cases are these special cases, average performance
on pure rounding boundary input will get speeded up.

The algorithm continues then with two iterations in Ziv’s
correct rounding loop. The first step will approximate x¥ with
an accuracy equivalent to about 60 valid bits [8]], [S], [6].
In order to meet the requirements of our rounding boundary
detection algorithm, the second step must then approximate
x¥ with an accuracy equivalent to at least 117 valid bits.
The rounding boundary test then filters the remaining round-
ing boundary cases before further iterations are launched if
needed. In our approach, the rounding boundary test with its
mere eight comparisons becomes thus a negligible part of the
whole algorithm for a correctly rounded function pow.

IV. CORRECTNESS PROOF

Claiming correct rounding properties and — more important
— claiming termination of Ziv’s iteration is only worthwhile if
a complete proof is given. Let us thus prove the correctness of
our rounding boundary detection Algorithm |I| detectRound-
ingBoundaryCase. We show a series of lemmas following
the argumentation scheme in Section This proof extends
concepts sketched in [L1].
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Theorem 4.1:
Let

S = {(x,y)GDQ\yEN,2§y§34}
U {(m2fn)eD? | FeZ —5<F <O,
ne2N+1, 1<n< 34, m62N+1}.

Let o054 be round-to-nearest to 54 bits. Thus, the following
holds:

o54(z¥) —a¥

S o-114
xY = ’

V(z,y) €S,2¥ € F5y V

Proof (sketch):
The bound has been obtained using our worst-case search
algorithm [13]], [[14]. Proving the correctness of this algorithm
is beyond the scope of this paper. ]
The test whether 2527 . ;2" n — 9G . k can be decom-
posed into two separate tests:
Lemma 4.1:
Assume that £, F,G € Z, m,n,k € 2N + 1. Thus, the
following holds:

E-2F.n=aG

2E-2F-n . r
A m2 =k,

m2m=20F o
Proof (sketch):
The right-to-left implication is obvious. Let us prove the
converse. If F' is negative, one can rewrite the left equality:
2B . mn = 26277 k27" We now have an equality between
rational numbers and the 2-valuation gives E - 28 . n = G
(whether F' is nonnegative or not). And as a consequence,
oF.
m* ™ = k holds too. ]
The test m2 ™ = k, F < 0, can be decomposed into two
tests, m2" = j € N and j™ = k:
Lemma 4.2:
Assume m,n,k € 2N+ 1, F € Z, F < —1. Thus, m? ™ =
k= m? eN.
Proof (sketch):
It suffices to remark that a 2~ F-root of an integer m is an
integer only if all valuations of the prime factor decomgosition
of m are divisible by 27 and that n is odd. So, if m?" is not
an integer, there exists a valuation in the prime decomposition
as well of m as of m™ that is not divisible by 2=F but all
valuations of k2 are divisible by 2% [
The algorithms check several bounding conditions on the
inputs. These bounds can be shown as follows.
Lemma 4.3:
Let m € 2N + 1 be bounded by 3 < m < 253 — 1. Let
n € 2N+1 be bounded by 1 < n < 253 —1. Let k € 2N+41 be
bounded by 1 < k < 25*—1. Let F' € Z be an integer. Assume
that m2" ™ = k. Thus max(2¥,1)-n <34 and -5 < F < 5.
Proof:
In the first place, let us show the upper bounds. Let j =
m™in(2".D) | From Lemma4.2] we have j € N. From m2" ™ =
k, we have jmax(2". 1) — & “Since k < 254 — 1, we know that
max(2F,1)-n-log,(j) < 54. Since m > 3, m is odd and j is
an integer, we have j > 3, and maX(QF, 1)n< % < 35.
And since max(2%,1)-n is an integer, we have the first upper
bound: max(2f,1) - n < 34. Then, since n > 1, we have
2F < 34, and since F is an integer, we have the second upper

bound: F' < 5.

Let us now show that F' > —5. Assume that ' < 0. We
have j2°° = m < 253. Therefore 2= - log,(j) < 53, i..
27 > log,(j)/53, and since j > 3, we have 27" > 2 > &
Hence F' > —5. |

The correctness of our Algorithm detectRounding-
BoundaryCase is also to be shown for negative y that we
can classify as follows.

Lemma 4.4:

Assume that z,y € D such that 2 > 0, y < 0 and 271975 <
¥ < 21024.
Thus, z¥ € Fsy iff H €Z . (x=2"Nt-y € 7).

Proof:
The existence of the indicated ¢ clearly implies z¥ € [Fsq4.
The other implication can be proved as follows. Since y is a
negative rational number, there exist two positive integers g
and 7 such that y = —%. Since x > 0 and =z € D, there exist
an odd integer s > 1 and an integer ¢ such that x = s - 2.
Since z¥ > 0 and ¥ € 54, there exist an odd integer u > 1
and an integer w such that z¥ = u - 2*. Then (s - 2!)~9/" =
u - 2%, Therefore s79 - 279" = y” - 2™, Let p be an odd
prime number. By considering the p-valuation v,, one gets:
—q - vp(s) =7 -vy(u). As s and u are non-zero integers, one
has v,(s) > 0 and v,(u) > 0. And as ¢ and r are positive
integers, one necessarily has v,(s) = v,(u) = 0. Since s and
w are odd, s = uw = 1. Therefore x = 2¢. Then z¥ = 2.
Hence ty = w € Z. [ |

Here is finally the correctness theorem of our algorithm for
detecting rounding boundary cases.

Theorem 4.2:

Algorithm [I] detectRoundingBoundaryCase is correct.

This means Vz € D,z > 0 and Yy € D,y # 0,y # 1 such

that 271975 < 2¥ < 21024 and V2 = 2% - (1 + ¢) for some &,

le| < 27116 the algorithm returns true iff 2Y € Fy.

Proof (sketch):

Combining Theorem Lemmas and and

considering at which lines the algorithm may return true

(respectively false), the consequence of the theorem follows.
|

V. EXPERIMENTAL RESULTS

We have implemented our approaches to correct rounding of
the function pow and to rounding boundary detection inside
the crlibm library [8]. We have compared our implemen-
tations to a not-correctly rounded system libm, to Ziv’s
libultim, Sun’s 1ibmcr and to MPFR version 2.2.0. The
experiments have been conducted on two systems: first, on an
Intel Xeon CPU at 2.40 GHz running GNU/Linux 2.6.19.2-
server with gcc 3.3.5 and, second, on an IBM Power5 at 1.66
GHz running GNU/Linux 2.6.18.8-0.3-ppc64 with gcc 4.1.2.
Note that some of the considered implementations are not
available on some systems. The only rounding mode supported
by all libraries is round-to-nearest. The timing measures have
been normalized to 1 for crlibm.

In Table[l] we give separate timings for random input and for
input consisting only of non-trivial rounding boundary cases
(y # 1, y # 2). We indicate average and worst-case timings.



Table T

TIMINGS FOR RANDOM INPUT AND FOR INPUT CONSISTING ONLY OF NON-TRIVIAL ROUNDING BOUNDARY CASES (y # 1, y # 2).

Intel Xeon IBM Power5

Random input z¥ € Fsy Random input z¥ € Fsy

average / worst | average / worst | average / worst | average / worst
crlibm 1/7.70 3.18 /6.38 1/7.63 4.06 / 8.42
libm 1.20 / 134 0.633 / 0.899 - -
libultim - - 1.65 / 8550 3.19/4.14
libmcr 3.54 /172 0.636 / 1.61 - -
MPFR 170 / 298 479/ 168 700 / 1090 188 / 534

The worst-case timings given for random input are the worst
values observed and not absolute values.

These results show that average performance on random
input is increased by at least 39% in our implementation with
respect to previous implementations, for instance 1ibultim.
These improvements are obtained at the sake of a slight slow-
down of the very rare rounding boundary cases, for instance, of
about 21% with regard to 1ibultim. The difference between
the timings for hard-to-round cases and rounding boundary
cases can be neglected: rounding boundary cases are not more
than 9% slower. For libmcr, this overhead of rounding
boundary detection could still go up to about 50%. It seems
reasonable that an application that can afford a factor 7.70
between average and worst-cases for correct rounding, can
afford 9% more for 39% speed-up on average. The differences
on the Xeon architecture where the worst-case on random
input is slower than rounding boundary cases, can be explained
by expensive subnormal rounding. Rounding boundary cases
are about 50% faster on average than in the worst-case. This
latter experimental result perfectly validates the relevance of
our theoretical estimates of 49.6% (see Section [[II-A).

VI. CONCLUSIONS AND FUTURE WORK

In this article, we have considered the detection of rounding
boundary cases of the function pow : (z,y) — a¥ in
double precision. We have presented an algorithm for efficient
rounding boundary detection. The algorithm, consisting of
practically only a few comparisons with constants, allows
for better average performance of an implementation of pow.
Typically, the critical path gets no longer delayed by operations
that are difficult to pipeline. Loops involving tests and square
root extraction are replaced by a straight-line program.

Our algorithm uses pre-computed constants. These constants
are derived from the worst-case accuracy of the function pow
in a particular sub-domain of double precision. This innovative
use of the techniques developed for the correct rounding can be
extended to other functions and might be profitable in terms
of performance. We will investigate in this direction in the
future.

The advantages of our approach and implementation is the
improvement of the average performance of pow of about 39%
and the drop in overhead of the rounding boundary detection
to maximally 9%. The drawback of the approach is the slow-
down of the very rare (p = 2787) rounding boundary cases of
about 21%. With respect to rounding boundary case average

performance, this slow-down could be diminished if not only
the trivial cases y = 2, y = 3 and y = 4 could be handled apart
without affecting the critical path on pipelined processors.
For instance, still 99.1% of the non-trivial midpoint cases are
formed by the case y = % It is part of our future work to
find a special algorithm for this case. The case would require
a pipeline-blocking square root extraction on a special path if
current techniques were used.

The algorithm presented in this article is a basic brick for
a correctly rounded implementation of pow. The worst-case
accuracy for correct rounding and — more important — the
absolute worst-case timing of the different implementations
still cannot be bounded. For the purpose of this article,
worst-case information on a partial domain has been useful.
Future work might evaluate how correct rounding of pow with
bounded worst-case performance could be enabled without
knowing the worst case on the whole domain.
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