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Abstract—We propose a new algorithm to find worst cases for the correct rounding of a mathematical function of one variable. We first

reduce this problem to the real small value problem—i.e., for polynomials with real coefficients. Then, we show that this second

problem can be solved efficiently by extending Coppersmith’s work on the integer small value problem—for polynomials with integer

coefficients—using lattice reduction. For floating-point numbers with a mantissa less than N and a polynomial approximation of degree

d, our algorithm finds all worst cases at distance less than N
�d2
2dþ1 from a machine number in time OðN dþ1

2dþ1þ"Þ. For d ¼ 2, a detailed study

improves on the OðN2=3þ"Þ complexity from Lefèvre’s algorithm to OðN4=7þ"Þ. For larger d, our algorithm can be used to check that

there exist no worst cases at distance less than N�k in time OðN1=2þ"Þ.

Index Terms—Computer arithmetic, multiple precision arithmetic, special function approximations.

�

1 INTRODUCTION

THE IEEE-754 standard for binary floating-point arith-
metic [11] requires that all four basic arithmetic

operations (þ, �, �, �) and the square root are correctly
rounded. For a given function, floating-point inputs for
which it is difficult to guarantee correct rounding, called
worst cases, are numbers for which the exact result—as
computed in infinite precision—is near a machine number
or near the middle of two consecutive machine numbers.
This is the famous “Table Maker’s Dilemma” problem
(TMD for short). Several authors [12], [13] have shown that,
for the class of algebraic functions, such worst cases cannot
be too close to a machine number or the middle of two
consecutive machine numbers. Such bounds enable us to
design some efficient algorithms that guarantee correct
rounding for division and square root and less efficient
algorithms for other algebraic functions.

However, for transcendental functions, number theoretic

bounds—when they exist—are not sharp enough, which

makes correct rounding much harder to implement. Defour

et al. proposed in [7] to introduce different levels of quality

for transcendental functions. However, an efficient imple-

mentation of Levels 1 and 2—correct rounding in the whole

domain where the function is mathematically defined for

Level 2 and in a subdomain for Level 1—requires first

solving the TMD problem, i.e., to determine the worst cases

for the given function in the given floating-point format.
Systematic work on the TMD was done by Lefèvre and

Muller [15], who published worst cases for many elemen-

tary functions in double precision, over the full range for

some functions. Alas, their approach is too expensive to

deal with quadruple precision, which is included in the

revision of the IEEE-754 standard. Thus, the only possible

approaches for higher precisions are either to guess a

reasonable bound on the precision required for the hardest

to round cases and to write a library computing up to that

precision or to write a generic multiple-precision library.

For instance, Ziv’s MathLib library does the former, where

the guessed bound is 768 bits for double precision [20].
Having an efficient algorithm to find the hardest to

round cases would help to replace guessed bounds—which

are usually overestimated—by sharper and rigorous

bounds. It would thus enable the design of very efficient

libraries with correct rounding [6]. Then, there would no

longer be a good reason to exclude those functions from the

correct rounding requirements of the IEEE-754 standard.
Exhaustive search methods consist of finding the hardest

to round cases of a given function in a given floating-point

format. They give the best possible bound, but are very

time-consuming. Moreover, a search for a given precision

gives little knowledge for another precision. We propose

here a new algorithm belonging to that class. It naturally

extends Lefèvre’s algorithm [14] and is based on Coppers-

mith’s ideas.
Previous related work was done by Elkies, who gave in

[8] a new algorithm using lattice reduction to find all

rational points of small height near a plane curve; for

example, his record:

5;853;886;516;781;2233 � 447;884;928;428;402;042;307;9182

¼ 1;641;843

corresponds to a worst case of the function x3=2 for a 53-bit

input and a 79-bit output; his other example:

2;220;422;9323 � 283;059;9653 � 2;218;888;5173 ¼ 30

corresponds to a worst case of ðx3 þ y3Þ1=3 in 32-bit

arithmetic. Gonnet [9] also used lattice reduction to find

worst cases, however, his approach seems equivalent to

Lefèvre’s algorithm.
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A preliminary version of this paper was presented at
Arith 16 [18] and the technique described has also been
used to break a cryptographic scheme proposed by Little-
wood in the 1950s [19].

The paper is organized as follows: Section 2 explains in
mathematical terms the problem we want to solve, recalls
Lefèvre’s algorithm, and analyzes its complexity. Section 3
is a short survey on lattice reduction and Coppersmith’s
work. Section 4 is the core of the paper: The new algorithm
is described, proven, and analyzed. Section 5 explains in
detail how the new algorithm can be tuned for the best
practical choice of parameters. Section 6 presents experi-
mental results for the 2x function, in double, double-
extended, and quadruple precisions.

2 PRELIMINARIES

2.1 Definitions and Notations

In the following, we consider floating-point numbers with a
mantissa of n bits. Let N ¼ 2n; for instance, N ¼ 253

corresponds to double precision, N ¼ 264 corresponds to
double-extended precision, and N ¼ 2113 corresponds to
quadruple precision. A worst case for a function f is a
floating-point number x such that fðxÞ has m identical bits
after the round bit. If all those m bits equal (respectively,
differ from) the round bit, x is a worst case for the directed
rounding modes (respectively, for rounding-to-nearest
mode).

For the sake of simplicity, we consider directed
rounding only (toward �1, toward þ1, toward zero)
since worst cases at precision n for all rounding modes
are worst cases at precision nþ 1 for directed rounding.
To find worst cases for directed rounding, we throw away
the first n significant bits of the result mantissa and we look
for runs of at least m zeros or ones in the following bits.
Equivalently, a worst case of length m corresponds to
jNfðxÞmod 1j < 2�m, where xmod 1 :¼ x� bxe denotes the
“centered” fractional part (see Fig. 1).

We also assume that both argument x and result y ¼
fðxÞ are normalized, i.e., 1

2 � x; fðxÞ < 1. This is easy to
achieve by multiplying x or fðxÞ by some fixed powers of
2, unless the exponent of fðxÞ varies a lot in the considered
range. This excludes the case of numerically irregular
functions like sinx for large x. More generally, in the
remainder of the paper, we assume that fðiÞðxÞ ¼ Oð1Þ for
any i � 0 and any x in the considered interval. This
condition is verified in general, but it should be noted that

there are cases where it is not fulfilled (for example, exp
with large exponents).

Given a polynomial approximation P ðtÞ to Nfð tNÞ—for
example, a Taylor expansion—the TMD problem can be
reduced to the following:

Real Small Value Problem (Real SValP). Given positive
integers M and T and a polynomial P with real
coefficients, find all integers jtj < T such that:

jP ðtÞmod 1j < 1

M
: ð1Þ

Remark 1. The mantissa boundN does not appear explicitly
in the real SValP, however, the polynomial P ðtÞ depends
on N and so does the error made in the polynomial
approximation.

Remark 2. If the fractional bits of the function behave
randomly, we can expect � T

M worst cases. Therefore, we
may assume T �M if we want only a few worst cases.
The notation x� y is equivalent to x ¼ OðyÞ.

2.2 Lefèvre’s Algorithm

Lefèvre’s algorithm [14], [15] works as follows: One
considers linear approximations to the function f on small
intervals. Those approximations are computed from higher
order polynomial approximations on larger intervals, using
an efficient scheme based on the “table of differences”
method. On each small interval, worst cases are found using
a modified version of the Euclidean algorithm, which gives
a lower bound for jNfð tNÞmod 1j on that interval.

Assume fðx0 þ xÞ ¼ a0 þ a1xþ a2x
2 þOðx3Þ around x0.

Since we neglect terms of order two or more in Nfð tNÞ, we
need ja2 T 2

N j � 1
M so that the error coming from the

polynomial approximation does not exceed the distance
1
M. Together with T �M, it follows T � N1=3. Therefore,
the complexity of Lefèvre’s algorithm is OðN2=3þ"Þ since we
have to consider N

T � N2=3 small intervals to check a
complete mantissa range.

In practice, Lefèvre’s algorithm is expensive but still
feasible for double precision (N2=3 � 4 � 1010), near the limits
of current processors for double-extended precision
(N2=3 � 7 � 1012), and out of reach for quadruple precision
(N2=3 � 5 � 1022).

3 LATTICE REDUCTION AND COPPERSMITH’S
TECHNIQUE

In this section, we first state some basic facts about
lattices—we refer to [17] for an introduction to that
topic—and we explain Coppersmith’s technique, on which
our algorithm is based.

3.1 Some Basic Facts in Lattice Reduction Theory

A lattice L is a discrete subgroup of IRn or, equivalently, the
set of all integer linear combinations of ‘ � n linearly
independent vectors bi over IR, that is:

L ¼
X‘

i¼1
xibi j xi 2 ZZ

( )
:

STEHL�EE ET AL.: SEARCHING WORST CASES OF A ONE-VARIABLE FUNCTION USING LATTICE REDUCTION 341

Fig. 1. A function graph and the grid of machine numbers. Worst cases

correspond to grid points with a small vertical distance to the curve.



We define the determinant, also called the volume, of the

lattice L as: detðLÞ ¼
Q‘

i¼1 jjb	i jj, where jj:jj is the Euclidean

norm and ½b	1; . . . ;b	‘ 
 is the Gram-Schmidt orthogonaliza-

tion of ½b1; . . . ;b‘
. The basis ½b1; . . . ;b‘
 of L is not unique

and, from an algorithmic point of view, only bases which

consist of short linearly independent vectors of L are of

interest. Those so-called reduced bases always exist and can

be computed in polynomial time with the well-known LLL

algorithm [16].

Theorem 1. Given a basis ½b1; . . . ;b‘
 of a lattice L � ZZn, the

LLL algorithm provides in time polynomial in the bit length of

the input, a basis ½v1; . . . ;v‘
 satisfying:1

1. jjv1jj � 2‘=2 detðLÞ1=‘,
2. jjv2jj � 2‘=2 detðLÞ1=ð‘�1Þ.

Coppersmith (see [3], [4], or [5] for an overall descrip-

tion) found an important consequence of this theorem: One

can compute, in time polynomial in logA, the small roots of

a multivariate polynomial modulo an integer A. His

method proved very powerful to factorize integers when

some bits of the factors are known and to forge some

cryptographic schemes (see [1], [2], [3], for example). The

algorithm described in Section 4 intensively uses that

technique.

3.2 The Integer Small Value Problem

The problem that will prove relevant in our case is the

following: Given a univariate polynomial P 2 ZZ½x
 of

degree d, find on which small integer entries it has small

values modulo a large integer A. Equivalently, we are

looking for the small integer roots of the bivariate

polynomial:

Qðx; yÞ ¼ P ðxÞ þ y ðmod AÞ:

We now explain how Coppersmith’s technique helps

to solve it. First, let � be a positive integer (which will

later grow to infinity) and assume ðx0; y0Þ is a root of Q

modulo A. We consider the family of polynomials

Qi;jðx; yÞ ¼ xiQjðx; yÞA��j with 0 � iþ dj � d�. Then,

ðx0; y0Þ is a root modulo A� of each Qi;j, whence of each

integer linear combination of them.
Our goal is to build two integer combinations of those

polynomials, v1ðx; yÞ and v2ðx; yÞ, which take small values

—i.e., less than A�—for any small x and y, more precisely,

jxj � X and jyj � Y for some fixed boundsX and Y . Thus, if

ðx0; y0Þ is a small root of v1 and v2 modulo A�, ðx0; y0Þ is also
a root of v1 and v2 over ZZ. Finally, x0 will be found by

looking at the integer roots of the resultant

Resyðv1; v2Þ 2 ZZ½x
.
It remains to explain how to find those two polynomials.

For this, we consider the lattice of dimension ð�þ1Þðd�þ2Þ
2

spanned by the vectors associated with the polynomials

Qi;jðX�; Y �Þ: The vector linked to a bivariate polynomialP
i;j ai;j�

i�j has its �i�j coordinate equal to ai;j. We give here

the shape of the matrix we get in the case d ¼ 3 and � ¼ 2.

i=j

0=0

1=0

2=0

3=0

4=0

5=0

6=0

0=1

1=1

2=1

3=1

0=2

A2

A2X

A2X2

A2X3

A2X4

A2X5

A2X6

� � � � AY

� � � � AXY

� � � � AX2Y

� � � � AX3Y

� � � � � � � � � � � Y 2

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

:

Since we get a triangular matrix, the calculation of the
determinant is obvious:2

detðLÞ ¼ Ad�3=3þoð�3ÞXd2�3=6þoð�3ÞY d�3=6þoð�3Þ;

dimðLÞ � d�2=2:

Therefore, by Theorem 1, the LLL algorithm gives us two

vectors, v1 and v2, of norms that are asymptotically

below A2�=3þoð�ÞXd�=3þoð�ÞY �=3þoð�Þ. Those vectors v1 and v2

correspond to two polynomials v1ðX�; Y �Þ and v2ðX�; Y �Þ.
Moreover, if jxj � X and jyj � Y , then

jvkðx; yÞj �
X
i;j

v
ðkÞ
i;j X

iY j
��� ��� jxjijyjj

XiY j
� c �max v

ðkÞ
i;j X

iY j
��� ���

� c � jjvkjj

for a certain constant c. Thus, to get jvkðx; yÞj < A�, it is
sufficient that:

c � A2�=3þoð�Þ �Xd�=3þoð�Þ � Y �=3þoð�Þ < A�;

which asymptotically gives the bound XdY � A.
Using Coppersmith’s technique, one can thus solve the

integer SValP in polynomial time as long as XdY < A1��. In

fact, this is not completely true because we used an

argument we cannot prove: We assumed that

Resyðv1; v2Þ 6¼ 0. This assumption is frequently made in

cryptography (see [1], [2], [3]).

4 THE NEW ALGORITHM AND ITS ANALYSIS

In this section, we present the new algorithm, prove its
correctness, and analyze its complexity.

4.1 The SLZ Algorithm

The real SValP is the following problem: Given a

polynomial P , find for which integers t, P ðtÞ is near an

integer. We solve this problem by reducing it to the integer

SValP. The difficulty is that P ðtÞ has real coefficients and

the LLL algorithm does not work well with real input. The

following algorithm overcomes that difficulty (we present

here a complete algorithm to solve the Table Maker’s

Dilemma, in which case, P ðtÞ ¼ Nfðt=NÞ, but the subalgo-

rithm consisting of Steps 3 to 11 may be of interest to solve

the real SValP itself).
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Algorithm SLZ.
Input: a function f , positive integers N , T , M, d, �
Output: all t 2 ½�T; T 
 such that jNfð tNÞmod 1j < 1=M

1. Let P ðtÞ be the Taylor expansion of Nfð tNÞ up to
order d, and n ¼ ð�þ1Þðd�þ2Þ2

2. Compute " such that jP ðtÞ �Nfð tNÞj < " for jtj � T

3. Let M 0 ¼ b 1=2
1=Mþ"c, C ¼ ðdþ 1ÞM 0, and3 ~PP ð�Þ ¼

bCP ðT�Þe
4. Let fe1; . . . ; eng  f�i�jg for 0 � iþ dj � d�

5. Let fg1; . . . ; gng  fðT�Þið ~PP ð�Þ þ ðdþ 1Þ�ÞjC��jg for
0 � iþ dj � d�

6. Form the n� n integral matrix L where Lk;l is the
coefficient of the monomial ek in gl

7. V  LatticeReduceðLÞ
8. Let v1;v2 be the two smallest vectors from V ,

QiðT�; �Þ the corresponding polynomials for i ¼ 1; 2
9. If there exists ðt; �Þ 2 ½�T; T 
 � ½�1; 1
 with
jQ1ðt; �Þj � C� or jQ2ðt; �Þj � C�, return(FAIL)

10. pðtÞ  Res�ðQ1ðt; �Þ; Q2ðt; �ÞÞ
if pðtÞ ¼ 0 then return(FAIL)

11. For each t0 in IntegerRootsðpðtÞ; ½�T; T 
Þ do
if jNfðt0NÞmod 1j < 1

M then output t0.

4.2 Correctness of the Algorithm

Theorem 2. In case algorithm SLZ does not return FAIL, it

behaves correctly, i.e., it outputs exactly all integers t 2
½�T; T 
 such that jNfð tNÞmod 1j < 1=M.

Proof. Because of the final check in Step 11, we only have to

verify that no worst case is missed. Suppose there is

t0 2 ½�T; T 
 with jNfðt0NÞmod 1j < 1=M. From the defini-

t i o n o f P , jP ðt0Þmod 1j < 1=M þ " � 1
2M 0 . S i n c e

jCP ðT�Þ � ~PP ð�Þj � dþ1
2 f o r j� j � 1, b y c h o o s i n g

� ¼ t0=T , we get j ~PP ðt0=T Þmod Cj < dþ 1.
Whence ~PP ðt=T Þ þ ðdþ 1Þ� ¼ 0 mod C has a root

ðt0; �0Þ with jt0j � T and j�0j < 1. Since Q1ðt; �Þ and
Q2ðt; �Þ are integer linear combinations of the gis, then
ðt0; �0Þ is a common root of Q1ðt; �Þ and Q2ðt; �Þ
modulo C� and even over the reals since
jQ1j; jQ2j < C�. Thus, t0 is an integer root of
Res�ðQ1ðt; �Þ; Q2ðt; �ÞÞ and will be found at Step 11. tu

4.3 Choice of Parameters and Complexity Analysis

4.3.1 Coppersmith’s Bound

Because of the use of Coppersmith’s technique in our

algorithm, to ensure the algorithm does not return FAIL at

Step 9, the bound “XdY � A” has to be verified. In our case,

X corresponds to T , Y to ðdþ 1Þ, and A to C, so we get:

T �M1=d:

4.3.2 Choice of the Degree d with Respect to T

Let a0; a1; . . . be the Taylor coefficients of f . Since we

neglect Taylor coefficients of degree dþ 1 and greater, the

error made in the approximation to Nfð tNÞ by P ðtÞ is

� adþ1T
dþ1N�d. Since we are looking for worst cases with

jP ðtÞmod 1j < 1=M, we wan t Tdþ1N�d � 1=M, i . e . ,
Tdþ1 � Nd=M.

4.3.3 Complexity Analysis

We have two bounds for T : The first one, T �M1=d, comes
from Coppersmith’s method, the second one,
Tdþ1 � Nd=M, comes from the accuracy of the Taylor
expansion. For M � N

d2

2dþ1, Coppersmith’s bound wins and
implies T �M1=d, whereas, for M � N

d2

2dþ1, Taylor’s bound
gives Tdþ1 � Nd=M. The largest bound for T is obtained for
M � N

d2

2dþ1, with T � N
d

2dþ1. For d ¼ 1, we find the constraint
T � N1=3 from Lefèvre’s method; for d ¼ 2, this gives T �
N2=5 with M � N4=5; for d ¼ 3, this gives T � N3=7 with
M � N9=7. With M � Nk, we get a best possible interval
length T � N1=2�1=ð8kÞþoð1=kÞ.

4.3.4 Working Precision

In Step 1, we can use floating-point coefficients in the Taylor
expansion P ðtÞ instead of symbolic coefficients as long as it
introduces no error in Step 3 while computing ~PP ð�Þ. Let ai
be the ith Taylor coefficient of f . Then, to get ~PP ð�Þ correct at
Step 3, the error on CNðT=NÞiai must be less than 1=2, thus
the error on ai must be less than 1=ð2CNÞðN=T Þi. Since
N � T , it thus suffices to compute ai with log2ð2CNÞ � 2n
bits after the binary point.

Remark 3. When searching worst cases with M � N ,
degree-2 approximations suffice. Indeed, N1�dTd �
N1�dM since Td �M (Coppersmith’s bound) and,
for d � 3, N1�dTd � N2�d � 1=N � 1=M. Thus, all
Taylor terms of degree � 3 give a negligible contribution
to Nfð tNÞ and the largest value of T is � N2=5, giving a
complexity � N3=5 to search a whole range of N=2
values. More generally, for M � Nk, degree-2k approx-
imations suffice, giving a complexity � N

2kþ1
4kþ1.

4.3.5 About the Size of the Coefficients of ~PP

Here,we study the size of the coefficients of the polynomial ~PP
obtained at Step 3 of the algorithm and used in the lattice
reduction.

Theorem 3. Suppose that the derivatives of f satisfy jfðiÞðxÞj ¼
Oð1Þ and that T is chosen to reach Taylor’s bound, i.e.,
Tdþ1 ¼ �ðNd=MÞ. Then, the degree-d polynomial ~PP ð�Þ ¼
~pp0 þ ~pp1� þ . . .þ ~ppd�

d 2 ZZ½� 
 computed at Step 3 of the
algorithm satisfies ~ppi ¼ OððN=T Þd�iþ1Þ for any 1 � i � d.

Proof. Let 1 � i � d. Since P ðtÞ ¼ p0 þ p1tþ . . .þ pdt
d is the

degree-d Taylor expansion of Nfð tNÞ, we have
pi ¼ OðN1�iÞ. ~PP is defined by

~PP ð�Þ ¼ ~pp0 þ ~pp1� þ . . .þ ~ppd�
d ¼ bCP ðT�Þe:

Since C ¼ �ðMÞ, we have ~ppi ¼ OðMTiN1�iÞ. Because T
is chosen to reach Taylor’s bound, we have
M ¼ �ðNdT�d�1Þ, which concludes the proof. tu
This result highlights the fact that the obtained instantia-

tions of the integer SValP are very special in the sense that
the high degree coefficients of the input polynomial are far
smaller than expected. As we show in the next section, this
weakness of the high degree coefficients can be used in
order to improve Coppersmith’s bound and, therefore, to
obtain a better complexity bound.
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5 A DETAILED STUDY OF THE CASE d ¼ � ¼ 2

This section gives improvements and details about the case

d ¼ � ¼ 2. This case is the smallest one that gives a bound

for T larger than N1=3. Indeed, d ¼ 1 corresponds to

Lefèvre’s algorithm and ðd; �Þ ¼ ð2; 1Þ gives a lattice of the

form:

C
TC

T 2C
a b c 3

0
BB@

1
CCA;

of determinant 3T 3C3, thus T 3 � C is required to get

sufficiently small vectors. Together with C �M and

Taylor’s bound, this implies T � N1=3.

5.1 The d ¼ � ¼ 2 Lattice

If fðxÞ ¼ a0 þ a1xþ a2x
2 þOðx3Þ is the Taylor expansion of

f at x ¼ 0, we have:

~PP ð�Þ ¼ aþ b� þ c�2;

with a ¼ bCNa0e, b ¼ bCTa1e, and c ¼ bCT 2a2=Ne. We

have to reduce the lattice spanned by the rows of the

following matrix:

C2

TC2

T 2C2

T 3C2

T 4C2

C Cb Cc 3C

TCa TCb TCc 3TC

T 2Ca T 2Cb T 2Cc 3T 2C

a2 2ab 2acþb2 2bc c2 6a 6b 6c 9

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
:

Assuming a2 ¼ �ð1Þ, T is chosen to reach Taylor’s

bound, and C ¼ �ðMÞ, we find c ¼ Oð
ffiffiffiffiffiffiffiffiffi
MT
p

Þ and it

follows from a simple determinant calculation that

Coppersmith’s bound for this matrix is T � N5=14. As

explained in Section 4.3.5, c is weaker than it could be for a

general instantiation of the integer SValP. This fact is used

below to improve Coppersmith’s bound to T � N5=13 and

to decrease the dimension of the lattice from 9 to 5, which

significantly improves the efficiency of the lattice reduction.

5.2 Improving Coppersmith’s Bound

It follows from the weakness of c that a certain subset of the

rows of the above 9� 9 matrix defines a sublattice with a

nonzero vector far shorter than guaranteed by Theorem 1.

More precisely, we erase rows 4, 5, and 8 and permute

columns to obtain the nonsquare matrix:

L ¼

C2

TC2

T 2C2

Ca Cb Cc 3C
TCa TCb TCc 3TC

a2 2ab 2acþ b2 6a 2bc 6b c2 6c 9

0
BBBBBB@

1
CCCCCCA
:

We have the following result:

Theorem 4. Given as input the rows of the matrix L above, the

LLL algorithm outputs a vector v of length �M19=12T 11=12.

Proof. From Theorem 1, we know that, to obtain such a

bound, it is sufficient to evaluate the determinant of the

lattice. Recall that the determinant of a lattice spanned by

b1; . . . ;bk is �k
i¼1jjb	i jj, where the b	i s are the Gram-

Schmidt vectors associated with the bis and, in particular,

a lattice need not be written as a square matrix to have a

determinant. Let v1; . . . ;v6 be the rows of L. Obviously,

jjv	1jj ¼ C2, jjv	2jj ¼ TC2, jjv	3jj ¼ T 2C2, and jjv	4jj ¼ 3C.

Since v	5 ¼ ð0; 0; 0; 0; TCc; 3TC; 0; 0; 0Þ, and c is large,

jjv	5jj ¼ OðM3=2T 3=2Þ:

Finally, v	6 ¼ ð0; 0; 0; 0; 0; 0; c2; 6c; 9Þ, which gives that

jjv	6jj ¼ OðMT Þ. As a consequence, we have

detðLÞ ¼ OðM19=2T 11=2Þ;

which ends the proof. tu
Recall that Coppersmith’s bound is derived from the

inequality jjvjj � C� so that, in our case, we obtain the

improved bound T �M5=11, i.e., T � N5=13, which gives

a complexity bound OðN8=13Þ.

5.3 Improving the Lattice Reduction Step

We now give some technical improvements for the lattice

reduction step. Notice first that, in order to obtain a short

vector of the lattice spanned by the rows of L, it is sufficient

to reduce the rows of the matrix L0 given by:

L0 ¼

C2

TC2

T 2C2

TCa TCb TCc
Ca Cb Cc 3C
a2 2ab 2acþ b2 2bc 6a c2

0
BBBBBB@

1
CCCCCCA
:

Let v01; . . . ;v
0
6 be the rows of L0. Then, for any x1; . . . ; x6, the

vector x1v
0
1 þ . . .þ x6v

0
6 is short in L0 if and only if x1v1 þ

. . .þ x6v6 is short in L. From a short vector v0 of L0, it is easy

to recover a short vector in L since the missing coordinates

are proportional to some of the remaining ones.
Moreover, the first row and the first column of L0 can be

erased, too. Indeed, suppose a short integer linear combina-

tion ðx2; . . . ; x6Þ of the truncations of the remaining rows is

found.With the notations of Section 3.2, this gives a bivariate

polynomialx2Q1;0 þ x3Q2;0 þ x4Q0;1 þ x5Q1;1 þ x6Q0;2. Then,

we reduce the constant term of this polynomial modulo C2

and the remainder of the SLZ algorithm does not change.
It is thus sufficient to reduce the rows of the following

5� 5 square matrix, with T � N5=13, and C;M � N11=13,

a � N11=13, b � N16=13, c � N8=13:
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TC2

T 2C2

TCa TCb TCc

Cb Cc 3C

2ab 2acþ b2 2bc 6a c2

0
BBBBBB@

1
CCCCCCA
�

N27=13

N32=13

N27=13 N32=13 N24=13

N27=13 N19=13 N11=13

N27=13 N32=13 N24=13 N11=13 N16=13

0
BBBBBB@

1
CCCCCCA
:

The LLL algorithm can be tuned for these particular

lattices. In particular, the entries of the matrix can be

truncated because the most significant bits suffice to find

the same transformation matrix.

5.4 The General d ¼ 2 Case

For d ¼ 2, the lattice L from algorithm SLZ is spanned by

the vectors

ðT�Þiðaþ b� þ c�2 þ 3�ÞjC��j; 0 � iþ 2j � 2�;

where ~PP ð�Þ ¼ aþ b� þ c�2. Keeping only the vectors with

iþ j � � and decomposing the monomials by blocks where

iþ 2j is constant, we find a sublattice of dimension ð�þ
1Þð�þ 2Þ=2 and determinant:

d � ðC2T Þ
�ð�þ1Þð�þ2Þ

6 c
�ð�þ2Þð2�þ5Þ

24 for � even;

ðC2T Þ
�ð�þ1Þð�þ2Þ

6 c
ð�þ1Þð�þ3Þð2�þ1Þ

24 for � odd:

(

With c � CT 2=N , C �M, and T 3 � N2=M, it follows that:

T � N
6�þ11
14�þ27 for � even;

N
6�2þ9��3
14�2þ25��3 for � odd:

(

This gives the following exponents � for T � N�:

When � grows to infinity, the best value we get is

T � N3=7þoð1Þ, giving a complexity of N4=7þoð1Þ for the

worst-case search.

6 EXPERIMENTAL RESULTS

We have implemented algorithm SLZ for d ¼ � ¼ 2 using

the GNU MP library [10] for the 2x function.4 Fig. 2 shows,

for double, double-extended, and quadruple precisions, the

best experimental parameters T and M for our method,

together with the estimated time to check a whole exponent

range of N=2 floating-point numbers.
Using that implementation, we started a search for worst

cases of 2x in double-extended precision. After one month

of calendar time, using 10 processors (1.4GHz Athlons from

the Centre Charles Hermite), we have completed about 10

percent of an exponent range of 263 values and found 21

inputs with at least 56 identical bits after the round bit

(Fig. 3). These experiments show that, with a carefully

tuned implementation, and several computers running a

few months, solving the Table Maker’s Dilemma for

double-extended precision is nowadays feasible for simple

elementary functions.
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[15] V. Lefèvre and J.-M. Muller, “Worst Cases for Correct Rounding of
the Elementary Functions in Double Precision,” Proc. 15th IEEE
Symp. Computer Arithmetic (ARITH 15), N. Burgess and
L. Ciminiera, eds., pp. 111-118, 2001.

[16] A.K. Lenstra, H.W. Lenstra, and L. Lovász, “Factoring Polyno-
mials with Rational Coefficients,” Mathematische Annalen, vol. 261,
pp. 515-534, 1982.

[17] L. Lovász, “An Algorithmic Theory of Numbers, Graphs and
Convexity,” SIAM Lecture Series, vol. 50, 1986.
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Vincent Lefèvre received the MSc and PhD
degrees in computer science from the �EEcole
Normale Supérieure de Lyon, France, in 1996
and 2000, respectively. Since 2000, he has been
an INRIA researcher at LORIA, France. His
research interests include computer arithmetic.

Paul Zimmermann received the PhD degree in
computer science from the �EEcole Polytechnique,
Palaiseau, France, in 1991. He has been an
INRIA researcher at INRIA Rocquencourt and,
since 1993, at INRIA Lorraine and LORIA,
Nancy, France. His research interests include
analysis of algorithms, computer algebra, and
computer arithmetic.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

346 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 3, MARCH 2005


