
The Generic Multiple-Precision

Floating-Point Addition With Exact

Rounding (as in the MPFR Library)

Vincent Lefèvre

INRIA Lorraine, 615 rue du Jardin Botanique, 54602 Villers-lès-Nancy Cedex,

France

Abstract

We study the multiple-precision addition of two positive floating-point numbers
in base 2, with exact rounding, as specified in the MPFR library, i.e. where each
number has its own precision. We show how the best possible complexity (up to a
constant factor that depends on the implementation) can be obtain.

Key words: multiple precision, floating point, addition, exact rounding

1 Introduction

In this paper, we consider the multiple-precision floating-point addition with
exact rounding, as specified in the MPFR library 1 : the inputs are two (binary)
floating-point numbers x and y of precision m ≥ 2 and n ≥ 2, a target precision
p ≥ 2 and a rounding mode ⋄, and the output is ⋄(x + y), i.e. the exact value
x+y rounded to the target precision in the given rounding mode, and a ternary
value giving the sign of ⋄(x + y) − (x + y).

By “addition”, we mean here the “true” addition, that is x + y where x and y

have the same sign, and x− y where x and y have opposite signs. For the sake
of simplicity, we restrict to the addition of positive values for x and y in the
following of the paper. In fact, this is how it is implemented in MPFR: indeed,
the addition and subtraction functions call an auxiliary function, ignoring the
signs of the input numbers (they are regarded as positive).

Email address: Vincent.Lefevre@loria.fr (Vincent Lefèvre).
URL: http://www.vinc17.org/research/ (Vincent Lefèvre).

1 http://www.mpfr.org/

Preprint submitted to Real Numbers and Computers’6 30 August 2004



The addition seems to be a very simple function to implement, as being a ba-
sic function, easy to understand. This is unfortunately not true, in particular
under the MPFR specifications (where the inputs and the output may have
different precisions and the output must be the exactly rounded result), be-
cause many different cases need to be considered, and it is easy to forget one,
both in the implementation of the addition and in the tests. For a long time,
the MPFR addition had been buggy (more precisely, some rare special cases
were not handled correctly) and inefficient (also in some rare special cases, for
which the time complexity was exponential). I completely rewrote the addition
in October 2001. The presentation given in this paper is more or less based
on the same ideas as the ones used in the new MPFR implementation, with
some non-theoretical differences, mainly due to some MPFR internals.

First, the floating-point system is introduced in Section 2. The main compu-
tation steps (from which the algorithm can be deduced) and the complexity
are presented in Section 3. Section 4 deals with the MPFR implementation.
We finally conclude in Section 5.

2 The Floating-Point System

2.1 The Floating-Point Representation

We consider a floating-point system in base 2. The results presented in this
paper can naturally be extended to other fixed even bases, but we choose the
base 2 (this is the base of the floating-point system in MPFR) to make the
notations easier to understand.

In our system, an object may contain a special value, like NaN (not a number)
or an infinity, zero (possibly signed, as in the IEEE-754 standard[1] and in
MPFR), or an non-zero real number that can be written:

s × 0.b1b2b3 . . . bp × 2e,

where s = ±1 is the sign, the bi’s are binary digits (0 or 1) forming the
mantissa, e is the exponent (a bounded integer 2 ), and p is an integer greater
or equal to 1, called the precision. In MPFR, the precision p is not fixed; it
is attached to each object. Non-zero real values are normalized, i.e. b1 6= 0,
that is in base 2, b1 = 1. The system does not have subnormals (i.e. numbers
with b1 = 0) as they are not really useful with a huge exponent range (like in
MPFR) and would make the algorithms and the code much more complex.

2 In MPFR, the exponent is between 1 − 230 and 230 − 1.

2



In the following of the paper, we consider only positive input numbers (as said
in the introduction), i.e. numbers that can be written: 0.1b2b3 . . . bp × 2e.

2.2 Rounding

When adding two positive numbers x and y of respective precisions m and n,
the result is not necessarily representable in the target precision p; it must be
rounded, according to one of the rounding modes chosen by the user, similar
to the IEEE-754 rounding modes:

• rounding to minus infinity (downwards): we return the largest floating-point
number in precision p that is less or equal to x + y;

• rounding to plus infinity (upwards): we return the smallest floating-point
number in precision p that is greater or equal to x + y;

• rounding towards zero: we round downwards, since x + y > 0;
• rounding to the nearest: we return the floating-point number in precision p

that is the closest to x+y. Halfway cases are specified by the implementation;
if p ≥ 2 (this is required by MPFR), then we can choose the round-to-
even rule, like in the IEEE-754 standard and in MPFR: we return the only
number that has an even mantissa, i.e. with bp = 0.

Note that the returned result must be the rounding of the exact result; this
requirement is called correct or exact rounding.

In addition to the rounded result, a ternary value is returned, giving the sign
of ⋄(x + y) − (x + y), where ⋄ denotes the chosen rounding mode: a positive
number means that the rounded result is greater or equal to the exact result,
a negative number means that the rounded result is less or equal to the exact
result, and 0 means that the returned result is the exact result.

Moreover, it is possible that the exponent of the rounded result is not in the
exponent range, in which case an overflow is generated. This case does lot lead
to any practical or theoretical difficulty and is beyond the scope of this paper.

How the exact result of a canonical infinite mantissa 0.1b2b3 . . . (where the
number of zero bits is infinite) is rounded can be expressed as a function of
the bit r = bp+1 following the truncated p-bit mantissa, called the rounding

bit, and s = bp+2 ∨ bp+3 ∨ . . ., called the sticky bit, as summarized in Table 1
(we recall that the result is positive).

Note: We did not mention the ternary value, as it can easily be deduced from
Table 1 (telling how the mantissa is rounded). Also, like the rounding modes
towards −∞ and towards +∞, the returned ternary value needs to be negated
if the result is negative (not considered in this paper).

3



r / s downwards upwards to the nearest

0 / 0 exact exact exact

0 / 1 − + −

1 / 0 − + − / +

1 / 1 − + +

Table 1
A − in the table means that the mantissa of the exactly rounded result is
0.1b2b3 . . . bp, i.e. the truncated exact mantissa. A + in the table means that one
needs to add 2−p to the truncated mantissa (leading to an exponent change if all
the bi’s up to bp are 1). The − / + corresponds to the halfway cases, and the
round-to-even rule is applied, that is: − if bp = 0, + if bp = 1.

3 The Main Computation Steps and the Complexity

We still denote the precisions of the input numbers x and y and the result by
m, n and p respectively.

The addition of two positive floating-point numbers x and y of respective
exponents ex and ey consists in:

(1) ordering x and y so that ex ≥ ey,
(2) computing the exponent difference d = ex − ey,
(3) shifting the mantissa of y by d positions to the right,
(4) adding the mantissa of x and the shifted mantissa of y and rounding the

result (shifting it by 1 position to the right if there is a carry),
(5) computing the exponent of the result: ex or ex + 1 if there is a carry.

This method is very inefficient if many trailing bits of x or y (possibly all the
bits of y) do not have any influence on the result, for instance:

0.101010000010010001 + 0.10001 × 2−9

rounded to 4 bits. The exactly rounded result and the ternary value can be
deduced from only the first 6 bits 101010 of x (and none for y), knowing the
fact that its first mantissa bit is always 1.

So, we are interested in taking into account as few input bits as possible (the
possible hole between the least significant bit of x and the most significant bit
of y must also be detected). We do not have any particular knowledge about
the input numbers x and y (and the result); we assume that the mantissa
bits are 0 and 1 with equal probabilities after some given position and that
x and y are independent numbers. Of course, this is not necessarily a good
assumption, but this will be discussed when it has an importance.

4



The addition can be written x+y = t+ε, where t is the main term, computed
with the first p + 2 bits of x and the corresponding max(p + 2 − d, 0) bits of
y, and ε is the error term, satisfying 0 ≤ ε < 2ex−p−1. This can graphically be
represented by:

t

x′ x′′

y′ y′′

where x′′ may be empty and either y′ or y′′ may be empty.

The main term t is computed and written in time Θ(p); indeed, an Ω(p) time
is necessary to fill the p + 2 bits, and a linear time is obviously sufficient.
There are many ways to deal with all the different cases (the mantissas of x

and y may completely overlap, partially overlap in numerous ways, or even not
overlap at all, and some parts of the result may need to be filled with zeros); a
carry detection can also be performed by looking at the most significant bits
of x and y first. More will be said in Section 4, about the implementation in
MPFR. However this is not an important point here, as long as the complexity
is in Θ(p).

The error term allows to obtain the truncated mantissa, the rounding bit and
the sticky bit (Section 2.2). First, if the computation of the main term has
lead to a carry, then p + 3 bits of the result have really been computed. This
case can be regarded as if there were no carry and the first iteration of the
processing described below were already performed (then, this is only a matter
of implementation). So, for the sake of simplicity, let us consider that p+2 bits
of the result have been computed, let u denote the weight 3 of the bit p+2 (so,
0 ≤ ε < 2u), and let f denote its value (0 or 1) 4 , that we call the following

bit. Table 2 gives the rounding bit r and the sticky bit s as a function of the
following bit f and the error ε.

Combining Tables 1 and 2, we get Table 3. Now we may need to determine
the sign of ε − fu (depending on the cases given by Table 3). This is done
with an iteration over the remaining bits of x and y.

• If f = 0, we need to distinguish the cases ε = 0 and ε > 0. We have: ε > 0
if and only if at least a trailing bit (of x or y) is 1. In particular, if y < u,

3 This is the corresponding power of 2; for instance, the weight of the bit 1 in 0.001
is 2−3.
4 If a carry was generated, consider only the first p + 2 bits of the result in t, and
the bit p + 3 is taken into account in ε.

5



f ε r s

0 ε = 0 = 0

0 ε > 0 = 1

1 ε < u = 1

1 ε = u + 0

1 ε > u + 1

Table 2
For r, an = means that the rounding bit is the bit p + 1 of the temporary result
t, and a + means that 1 must be added to the bit p + 1 of t (and the carry must
propagate).

rt f ε r s downwards upwards to the nearest

0 0 ε = 0 0 0 exact exact exact

0 0 ε > 0 0 1 − + −

0 1 ε < u 0 1 − + −

0 1 ε = u 1 0 − + − / +

0 1 ε > u 1 1 − + +

1 0 ε = 0 1 0 − + − / +

1 0 ε > 0 1 1 − + +

1 1 ε < u 1 1 − + +

1 1 ε = u 0 0 exact exact exact

1 1 ε > u 0 1 − + −

Table 3
The first three columns give all the possible cases for the rounding bit of the main
term, the following bit f and the error ε. The next two columns give the corre-
sponding values of the rounding bit r and the sticky bit s (once the error has been
taken into account). The last three columns give information for the rounded result
and the ternary value; in the last two cases (lines), a carry is added to the mantissa
before the rounding (and this may lead to an exponent change, but has no effect
on how the rounding is performed — implementations must just take care that the
ulp is different when rounding upwards).

then the most significant bit of y (always 1) is a trailing bit (said otherwise,
ε ≥ y); so, in this case, ε > 0. Otherwise, one needs to test the trailing bits,
the one after the other until a 1 is found, and in the worst case (ε = 0),
all the trailing bits need to be tested. As a consequence, the worst-case
complexity in the case f = 0 is in Θ(m + n + p).

Is there a best order to test the trailing bits? Under the condition that
we do not have any particular knowledge on the input numbers, there is

6



no best order 5 . One can choose one of the following two possibilities, for
instance:
· Test the trailing bits of x, then the trailing bits of y (or the other way

round) until a non-zero bit is found.
· Test trailing bits of both x and y at the same time. This may be an

interesting choice as some numbers tend to have an exact mantissa with
few non-zero digits (like small integers), thus many trailing zeros. Testing
trailing bits of x and y concurrently may allow to avoid such difficult cases.

• If f = 1, we need to distinguish the cases ε < u, ε = u and ε > u.
Let d denote the exponent difference so that the bits xi and yi−d have the
same weight (d is the shift count to align the mantissas). Let q be the first
integer such that the trailing bits xq and yq−d are equal (when a bit is not
represented, it is 0). If these bits are 0’s, then ε < u. Otherwise (i.e. if these
bits are 1’s), ε ≥ u. The equality ε = u can be decided as in the case f = 0
(ε > u if and only if at least one the untested bits is 1).

The best way is to start with bit p + 3 and loop over the increasing
positions, until q is found (and more if one has to decide if ε = u). If the x

mantissa or the y mantissa has entirely been read and q has not been found
yet, then it is not necessary to go further, as we can deduce that ε < u; in
other words, there is no possible carry with bits from only one mantissa.

Up to the position q − 1, we have xi + yi−d = 1, as one of the bits is 0
and the other is 1. When x and y overlap, it is necessary to test at least
one bit (as one of these two bits has an importance in the sign of ε − u).
Concerning the other bits, the result can be deduced from only one test (like
in the case f = 0), but an oracle would be needed, and it is not possible
to do better without any particular knowledge. Here is an example: let us
considered x = 0.101111100101 (12-bit precision), y = 0.11010 × 2−7 (5-bit
precision), and a 2-bit target precision. The mantissas are aligned in the
following way:

0.101111100101

+ 0.11010

Though on this particular example, testing the last five bits 0 is sufficient
to deduce that the exact result is less than 0.11, all the bits are tested
from the left to the right. Moreover, if either x or y (but not both) had
more bits, e.g. y = 0.11010111001 × 2−7, then testing these bits would not
be necessary as they cannot generate a carry to reach 0.11; however, if

5 One can argue that the real numbers naturally are logarithmically distributed, so
that the probability to have a 0 at position i is higher than the one to have a 1, and
the difference decreases as a function of i [2]. Therefore, in a very theoretical point
of view, if the time of each test is seen as a constant, it would be better to start
by the least significant bits! Of course, since the probabilities get very close to 1/2
very quickly, one would not see any difference in practice.

7



y = 0.110110000 × 2−7, testing the following four bits would be necessary
to deduce that the result is 0.11 exactly.

In the case f = 1, the loop is performed over the increasing positions from the
bit p + 3, grabbing the bit of x and the bit of y having the same weight. The
same loop can be performed in the case f = 0, though this is not the only
solution as said above. Of course, special cases must be taken into account: the
x mantissa does not necessarily overlap with the aligned y mantissa (as the
most significant bit of y may come after some trailing bits of x, some trailing
bits of x may come after the least significant bit of y, some trailing bits of y

may come after the least significant bit of x), and the most significant bit of
y may come after the least significant bit of x (hole between the x mantissa
and the y mantissa), any missing bit being regarded as 0. At each iteration,
the mantissa of the temporary result has the form: 0.1z2z3 . . . zprfff . . . fff

with an error in the interval [0, 2) ulp 6 . One iterates as long as the bits after
the (temporary) rounding bit are identical. This basically corresponds to the
Table Maker’s Dilemma, that occurs to exactly round any function (see [3],
for instance).

The time complexity is in Ω(p) and in O(m+n+ p). In the worst case, it is in
Θ(m + n + p). In average (if the bits are 0 and 1 with equal probabilities and
input numbers are independent), the complexity is in Θ(p), as the probability
to need to test k trailing bits decreases exponentially (in 2−k).

4 The MPFR Implementation

In this section, we present the implementation of the addition in MPFR. To
keep the paper from being too technical, we do not give many details (and
the reader can read the source code, as MPFR is distributed under the GNU
Lesser General Public License). A complete proof would also be very hard to
read and check (unless it could be mechanically checked); so, such a proof is
not provided.

Let us start with the representation of MPFR numbers. Non-special MPFR
numbers have a sign (accessed with C macros), a mantissa, an exponent (some
C integer) and a precision (also some C integer). The mantissa is represented
by an array of limbs ; a limb is an unsigned integer (having 32 bits or 64
bits, depending on the C implementation), as defined in the GMP library 7 ,
on which MPFR is based. All the bits of a limb are used to represent bits

6 Unit in the Last Place: here, the weight of the last bit f of the temporary result.
7 http://www.swox.com/gmp/

8



of the mantissa in the conventional binary representation 8 . The mantissa is
normalized, i.e. its most significant bit is always 1. Since the precision is not
necessarily a multiple of the limb size, some bits of the lowest mantissa limb
are not significant and are always 0 (except in temporary values).

The computation steps presented in Section 3 were bit based (as this is more
regular and easier to understand for a theoretical analysis). But working on
single bits in a software implementation would not be very efficient. Base
operations must be performed by blocks; some limbs may still need to be split
into two parts as the y mantissa must be aligned with the x mantissa.

In addition to the particular cases that arise in the bit-based case, we need
to distinguish the case where the exponent difference is a multiple of the limb
size and the other case, needing the y mantissa to be shifted (this is usually
done on the fly). We also need to take into account all the cases related to the
block boundaries (for instance, where the rounding bit lies in a limb).

First, the main term is computed, but there are differences with the bit-based
version. As the array holding the target mantissa does not necessarily have
the room for p + 2 bits and we want to avoid an inefficient memory allocation
for p + 2 bits and copy, the temporary rounding bit and the following bit are
stored in C integer variables rb and fb (determined on the fly, as soon as they
are known); in this way, then can also be handled more efficiently. The second
difference is all the bits of the target array are used for this computation (in
fact, this is more or less necessary, as the low-level GMP functions do not
perform any masking).

For the main term, we want to add the most significant parts x′ and y′. If
y does not overlap with the main term (y′ is empty), we just copy x′ to the
target array and zero the least significant limbs of the target if the target has
a greater precision than x. Now, let us assume that y overlaps with the main
term. With GMP, we cannot shift and add with a single operation; therefore
these operations have to be performed separately. First, with a GMP function,
we copy the most significant part of y, shifted if need be, to the target array
and we zero the limbs of the target that have not been touched: the most
and/or least significant limbs, if the exponent and the precision of y are small
enough. Then, with another GMP function, we add the most significant part of
x to the target. If a carry is generated, we increment the exponent (unless we
already had the maximum exponent, in which case we generate an overflow)
and shift the result to the right; a bit is lost due to the shift but it is either the
rounding bit or a following bit, and if necessary, the following bits are tested

8 GMP now allows to use some bits for the carries, called nail bits. They are not
supported yet in MPFR. One should note that contrary to integer operations, re-
dundancy provided by nail bits would probably not be very interesting here due to
the discontinuity of the rounding function.

9



and the rounding can be performed if they are not all equal.

Then, the non-significant bits of the target are taken into account; this occurs
only if:

• the rounding bit is still unknown (otherwise these bits have already been
taken into account before the shift due to the carry, as said above), and

• there are non-significant bits.

At this time, the rounding bit and the following bit may still be unknown; in
this case, they will be determined as soon as possible from the trailing parts
x′′ and y′′. The loops are performed on the increasing positions (by blocks),
as mentioned at the end of Section 3; moreover the cases f = 0 and f = 1 are
considered together (and not separated as in Section 3).

The iterations depend on the current status concerning x and y. Here are the
different cases that may arise during the iterations:

• x′′ has not entirely been read and y′′ has not been read yet.
• x′′ and y′′ overlap.
• x′′ has not entirely been read and y′′ has entirely been read.
• x′′ has entirely been read and y′′ has not been read yet.
• x′′ has entirely been read and y′′ has not entirely been read.
• x′′ and y′′ have entirely been read.

In the overlapping case, at each iteration, a limb of x and the corresponding
limb of y (built from two different limbs if y must be shifted) are added. The
possible carry is taken into account, and the loop ends as soon as the result
is 0 (all its bits are 0) for f = 0 or the maximum limb value MP_LIMB_T_MAX

(all its bits are 1) for f = 1.

We have focused on the differences coming from the computations by blocks.
The whole details may be found in the MPFR code.

5 Conclusion

We have presented the generic multiple-precision floating-point addition with
exact rounding, as specified in the MPFR library, first in a rather theoretical
point of view, then considering the current implementation in MPFR. The
theoretical analysis could give a more regular description of the implemen-
tation, by ignoring the fact that bits are grouped into words in a computer
memory. It could help to improve the current implementation (the fact that
the cases f = 0 and f = 1 are considered together is probably not a very good
idea, though it reduces the risk of forgetting particular cases).

10



The subtraction could be dealt with in a similar manner, in future work. This
is a bit more complicated due to a possible cancellation (when subtracting
very close numbers).

Full mechanically-checked proofs could also be considered, using the theoreti-
cal analysis to define the main notions.

References

[1] IEEE standard for binary floating-point arithmetic, Tech. Rep. ANSI-IEEE
Standard 754-1985, New York, approved March 21, 1985: IEEE Standards Board,
approved July 26, 1985: American National Standards Institute, 18 pages (1985).

[2] A. Feldstein, R. Goodman, Convergence estimates for the distribution of trailing
digits, Journal of the ACM 23 (2) (1976) 287–297.
http://portal.acm.org/citation.cfm?id=321948

[3] V. Lefèvre, J.-M. Muller, A. Tisserand, Towards correctly rounded
transcendentals, IEEE Transactions on Computers 47 (11) (1998) 1235–1243.
http://perso.ens-lyon.fr/jean-michel.muller/Nov98.pdf

11


