IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 3, MARCH 2012

289

On the Computation of
Correctly Rounded Sums
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Abstract—This paper presents a study of some basic blocks needed in the design of floating-point summation algorithms. In
particular, in radix-2 floating-point arithmetic, we show that among the set of the algorithms with no comparisons performing only
floating-point additions/subtractions, the 2Sum algorithm introduced by Knuth is minimal, both in terms of number of operations and
depth of the dependency graph. We investigate the possible use of another algorithm, Dekker's Fast2Sum algorithm, in radix-10
arithmetic. We give methods for computing, in radix 10, the floating-point number nearest the average value of two floating-point
numbers. We also prove that under reasonable conditions, an algorithm performing only round-to-nearest additions/subtractions
cannot compute the round-to-nearest sum of at least three floating-point numbers. Starting from an algorithm due to Boldo and
Melquiond, we also present new results about the computation of the correctly-rounded sum of three floating-point numbers. For a few
of our algorithms, we assume new operations defined by the recent IEEE 754-2008 Standard are available.

Index Terms—Floating-point arithmetic, summation algorithms, correct rounding, 2Sum and Fast2Sum algorithms.

1 INTRODUCTION

THE computation of sums appears in many domains of
numerical analysis. Examples are numerical integration,
evaluation of dot products, matrix products, means,
variances and many other functions. When computing the
sum of n floating-point numbers a1, as, ..., a,, the best one
can hope is to get o(a; + as + - - - a,), where o is the desired
rounding function (specified by a rounding mode, or by a
rounding direction attribute, in the terminology of the IEEE
754 Standard for floating-point arithmetic [2], [11]). On
current architectures this can always be done in software
using multiple-precision arithmetic. This could also be done
using a long accumulator, as advocated by Adams and
Kulisch [4], but such accumulators are not available on
current processors.

It is well known that the rounding error generated by a
round-to-nearest addition is itself a floating-point number.
Many summation algorithms published in the literature
(see for instance [1], [18], [19], [17], [5], [22]) are based on
this property and implicitly or explicitly use basic blocks
such as Dekker’s Fast2Sum and Knuth’s 2Sum algorithms
(Algorithms 1 and 2 below) to compute the rounding error
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generated by a floating-point addition. Since efficiency is
one of the main concerns in the design of floating-point
programs, we focus on algorithms using only floating-point
additions and subtractions in the target format and without
conditional branches, because on current pipelined archi-
tectures, a wrong branch prediction may cause the instruc-
tion pipeline to drain, with a resulting drastic performance
loss. The computation of the correctly rounded sum of three
floating-point numbers is also a basic task needed in
different contexts: in [5], Boldo and Melquiond presented
a new algorithm for this task, with an application in the
context of the computation of elementary functions. Hence,
it is of great interest to study the properties of these basic
blocks.

In this paper, we assume an IEEE 754 [2], [11] arithmetic.
We show that among the set of the algorithms with no
comparisons performing only floating-point operations, the
25um algorithm introduced by Knuth is minimal, both in
terms of number of operations and depth of the depen-
dency graph.

The recent revision of the IEEE Standard for floating-
point arithmetic considers arithmetics of radices 2 and 10.
Some straightforward properties of radix-2 arithmetic have
been known for a long time and are taken for granted. And
yet, some properties do not hold in radix 10. A simple
example is that, in radix 10, computing the average value of
two floating-point numbers a and b first by computing a + b
rounded to the nearest, and then by computing half the
obtained result rounded to the nearest again will not
necessarily give the average value rounded to the nearest.
We will investigate that problem and suggest some
strategies for accurately computing the average value of
two numbers in decimal arithmetic.

Under reasonable assumptions, we also show that it is
impossible to always obtain the correctly round-to-nearest
sum of n >3 floating-point numbers with an algorithm
performing only round-to-nearest additions/subtractions.
The algorithm proposed by Boldo and Melquiond for
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computing the round-to-nearest sum of three floating-point
numbers relies on a nonstandard rounding mode, rounding
to odd (see Definition 1). We show that if the radix is even,
rounding to odd can be emulated in software using only
floating-point additions/subtractions in the standard
rounding modes and a multiplication by the constant 0.5,
thus allowing the round-to-nearest sum of three floating-
point numbers to be determined without tests. We also
propose algorithms to compute the correctly rounded sum
of three floating-point values for directed roundings.

In a preliminary version of this paper [12], we gave
results valid in radix-2 floating-point arithmetic. We now
extend these results to other radices (the most interesting
one being radix 10), consider the problem of computing an
average value in radix 10, give new summation algorithms,
and extend the results of Theorems 2 and 3 to any precision.

1.1 Assumptions and Notations

We assume a radix-3 and precision-p floating-point arithmetic as
defined (for radices 2 and 10) in the IEEE 754-2008 standard
[11]. Typical examples are the basic formats defined by that
standard: precisions 24, 53, or 113 in radix 2, and 7, 16, and 34
in radix 10. The user can choose an active rounding mode, also
called rounding direction attribute: round toward —oo, round
toward +oo, round toward 0, round to nearest “even,” which
is the default rounding mode, and round to nearest “TiesTo-
Away.”" Given a real number z, we denote, respectively, by
RD(z), RU(z), RZ(x), and RN(z) the rounding functions
associated to these rounding direction attributes (assuming
round to nearest even for RN (x)).

Correct rounding is required for the four elementary
arithmetic operations and the square root by the above cited
IEEE standards: an arithmetic operation is said to be
correctly rounded if for any inputs its result is the infinitely
precise result rounded according to the active rounding
mode. Correct rounding makes arithmetic deterministic,
provided all computations are done in the same format,
which might be sometimes difficult to ensure [15]. Correct
rounding allows us to design portable floating-point algo-
rithms and to prove their correctness, as the results
summarized in the next section.

Given a real number z # 0, ulp,(z) denotes the unit in
the last place of z, i.e., if §° < |z| < ' with e € Z, then
ulp, (z) = #°*1"7. Where there is no ambiguity on the value
of p, we just write ulp(z).

We assume in the following that no double roundings
occur (that is, that all computations take place in the same
working precision). For instance, users of GNU/Linux on
32-bit x86 processors should be aware that by default, all
the computations on their platform are carried out in the so-
called double-extended precision (64 bits) format.? How-
ever, such processors tend to be less and less common, and
the x86-64 architecture does not have such problems in
practice, due to the use of the SSE instructions by default for
single and double precision arithmetic. These issues are

1. A tie-breaking rule must be chosen when the real number = to be
rounded falls exactly halfway between two consecutive floating-point
numbers. A frequently chosen tie-breaking rule is round to nearest even: x is
rounded to the only one of these two consecutive floating-point numbers
whose significand is even. This is the default mode in the IEEE 754-2008
Standard. The standard also defines another tie-breaking rule, required in
radix 10, called round ties to away: = is rounded to the one of the two
consecutive numbers whose significand has the largest magnitude.

2. Depending on the context, intermediate results may or may not be
converted to the target format, but both behaviors are here regarded as
incorrect.
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discussed with details in [16, Chapter 7], and the recent
IEEE 754-2008 Standard requires that it should be possible,
if desired, to perform all intermediate computations in a
given format.

1.2 Previous Results

The Fast2Sum algorithm (Algorithm 1) was introduced by
Dekker [8] in 1971, but the three operations of this algorithm
already appeared in 1965 as a part of a summation algorithm,
called “Compensated sum method,” due to Kahan [1]. The
following result is due to Dekker [8], see Muller et al. [16].

Theorem 1 (Fast2Sum algorithm). Assume a radix-3 floating-
point arithmetic, with (<3, with subnormal® numbers
available, that provides correct rounding with rounding to
nearest. Let a and b be finite floating-point numbers, both
nonzero, such that the exponent of a is larger than or equal to
that of b. If a+0b does not overflow, then the following
algorithm computes floating-point numbers s and t such that
s=RN(a+0b)and s+t =a+ b exactly.

Algorithm 1 (Fast2Sum(a,b)).

s=RN(a+0D);
z=RN(s—a);
t=RN(b—2);

Note that underflow cannot hinder the result: this is a
rather straightforward consequence of a fact that if  and
y are radix-f floating-point numbers, and if the number
RN(z+y) is subnormal, then RN(z+y) =z +y exactly
(see [9] for a proof in radix 2, which easily generalizes to
higher radices). Also, the only overflow that may occur is
when adding a and b.

Note that instead of having information on the exponents,
one may know that |a| > |b], but in such a case, the condition
of the theorem is fulfilled. Also, the condition § < 3 restricts
the use of this algorithm in practice to binary arithmetic. That
condition is necessary: consider, in radix 10, with precision
p = 4, the case a = b = 9,999. Applying Fast2Sum, we would
get s = 20,000 and t = —1. This gives s + t = 19,999, whereas
a+b=19,998.

However, if a wider internal format is available (one
more digit of precision is enough), and if the computation of
z is carried on using that wider format, then the condition
B <3 is no longer necessary. This might be useful in
decimal arithmetic, when the target format is not the largest
one that is available in hardware. We discuss the possible
use of Fast2Sum in radix 10 in Section 3.

If no information on the relative orders of magnitude of a
and b is available, or if the radix is larger than three, there is
an alternative algorithm due to Knuth [13] and Meller [14],
called 2Sum.

Algorithm 2 (2Sum(a,b)).

s = RN(a +b);
b = RN(s — a);
a =RN(s—V);
8 = RN (b — b);
6, = RN(a — d);

t= RN((Sa + 6?1);

3. In an arithmetic of precision p, a subnormal number has the form
M - o=+ where ey, is the smallest possible exponent and M is an
integer such that 0 < [M] < 87! — 1, as opposed to a normalized number of
the form M - 3 P*!, where epmin < € < emax and M is an integer such that
Bl < M| < B
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25um requires six operations instead of three for the
Fast2Sum algorithm, but on current pipelined architectures, a
wrong branch prediction may cause the instruction pipeline
to drain. As a consequence, using 2Sum instead of a
comparison followed by Fast2Sum will usually result in
much faster programs [17]. The names “25um” and “Fas-
t25um” seem to have been coined by Shewchuk [21]. They are
a particular case of what Rump et al. [20] call “error-free
transforms.” We call these algorithms error-free additions in
the sequel.

The IEEE 754-2008 standard [11] describes some new
operations with two floating-point numbers as operands:

e minNum and maxNum, which deliver, respectively,
the minimum and the maximum;

e minNumMag, which delivers the one with the
smaller magnitude (the minimum in case of equal
magnitudes); and

e maxNumMag, which delivers the one with the
larger magnitude (the maximum in case of equal
magnitudes).

The operations minNumMag and maxNumMag can be
used to sort two floating-point numbers by order of
magnitude, without using comparisons or conditional
branches. In radices less than or equal to three (or when a
wider precision is available for computing z), this leads to
the following alternative to the 25um algorithm.

Algorithm 3 (Mag2Sum(a,b)).
s =RN(a+b);
a’ = maxNumMag(a, b);
b = minNumMag(a, b);
z=RN(s—d);
t=RN( — 2);

Algorithm Mag2Sum consists in sorting the inputs by
magnitude before applying Fast2Sum. It requires five
floating-point operations, but the first three operations can
be executed in parallel. Mag2Sum can already be imple-
mented efficiently on the Itanium processor, thanks to the
instructions famin and famax available on this architecture
[7, p. 291]. Notice that, since it is based on the Fast2Sum
algorithm, Algorithm Mag2Sum does not work in radices
higher than three. Also, when underflow and overflow are
concerned, it has the same properties as Fast25um: under-
flow is harmless, and the only overflow that may occur is
when computing RN (a +b).

2 ALGORITHMS 2Sum AND MAG2Sum ARE MINIMAL
IN RADIX 2

In the following, we call an RN-addition algorithm an
algorithm only based on additions and subtractions in the
round-to-nearest mode: at step i the algorithm computes
z; = RN (z; + x1,), where z; and z;, are either one of the
input values or a previously computed value. An RN-
addition algorithm must not perform any comparison or
conditional branch, but may be enhanced with minNum,
maxNum, minNumMag, or maxNumMag as in Theorem 3.

For instance, 2Sum is an RN-addition algorithm that
requires six floating-point operations. To estimate the
performance of an algorithm, only counting the operations
is a rough estimate. On modern architectures, pipelined

arithmetic operators and the availability of several FPUs
make it possible to perform some operations in parallel,
provided they are independent. Hence the depth of the
dependency graph of the instructions of the algorithm is an
important criterion. In the case of Algorithm 2Sum, only two
operations can be performed in parallel, 8, = RN (b — V') and
8o = RN(a — d’). Hence the depth of Algorithm 2Sum is five.
In Algorithm Mag2Sum the first three operations can be
executed in parallel, hence this algorithm has depth three.

In this section, we address the following question: are
there other RN-addition algorithms producing the same
results as 2Sum, i.e.,, computing both RN(a +b) and the
rounding error a+b— RN(a+b) for any floating-point
inputs a and b, that do not require more operations, or that
have a dependence graph of smaller depth?

We have shown the following result, proving that among
the RN-addition algorithms, 2Sum is minimal in terms of
number of operations as well as in terms of depth of the
dependency graph.

Theorem 2. Consider a binary arithmetic in precision p > 2.
Among the RN-addition algorithms computing the same
results s and t as 2Sum on any inputs,

1. each one requires at least six operations;

2. each one with six operations reduces to 2Sum through
straightforward transformations (symmetries, etc.); and

3. each one has depth at least five.

As previously mentioned an RN-addition algorithm can
also be enhanced with minNum, maxNum, minNumMag,
and maxNumMag operations [11], which is the case for
Algorithm Mag2Sum. The following result states the
minimality of this algorithm.

Theorem 3. Consider a binary arithmetic in precision p > 2 and
the set of all the RN-addition algorithms enhanced with
minNum, maxNum, minNumMag, and maxNumMag. Among
all such algorithms computing the same results s and t as 2Sum
on any inputs,

1. each one requires at least five operations;
2. each one with five operations reduces to Mag2Sum; and
3. each one has depth at least three.

The proof of Theorems 2 and 3 is much too long to fit
here. In summary, the theorems were proved for precisions
from 2 to 12 by an exhaustive test on well-chosen inputs,
using the GNU MPER library [10]. The particular form of
these inputs (an integer plus a much smaller term) allowed
us to generalize these results for any precision larger than
12. The reader can find the full proof in an expanded
version of this paper, at http://hal.inria.fr/inria-00475279
(the programs written for the tests are also available).

3 ON THE Use oF FAST2Sum IN RADIX-10
ARITHMETIC

As explained in Section 1.2, the Fast2Sum algorithm
(Algorithm 1) is proven only when the radix is less than
or equal to three. Indeed, there are counterexamples in
radix 10 for this algorithm (we gave one in the introduc-
tion). And yet, we are going to show that using Fast2Sum
may be of interest, since the very few cases for which it does
not return the right answer can easily be enumerated.
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3.1  An Analysis of Fast2Sum in Radix 10

In this section, we consider a radix-10 floating-point system
of precision p. We also consider two floating-point numbers
a and b, and we will assume |a| > |b|. Without loss of
generality, we assume a > 0 (just for the sake of simplifying
the proofs). Our way of analyzing Fast2Sum will mainly
consist in considering Dekker’s proof (for radix 2) and
locating where it does not generalize to decimal arithmetic.

Notice that when the result of a floating-point addition or
subtraction is a subnormal, that operation is performed
exactly. Due to this, in the following, we assume no under-
flow in the operations of the algorithm (in case of an
underflow, our previous observation implies that the algo-
rithm is correct).

3.1.1 First Operation: s — RN(a + b)

Assume that a = M, - 10% Pt p = M, - 10?7, and s =
M, -10%~Pt where M,, M,, M,, e,, e, and e, are integers,
with

1P~ < M, | M|, | M| < 107 — 1.

Notice that the IEEE 754-2008 standard for floating-point
arithmetic does not define the significand and exponent of a
decimal number in a unique way. However, in this paper,
we will use, without any loss of generality, the values M,,
My, M, eq, e, and e, that satisfy the above given boundings:
what is important is the set of values, not the representa-
tions. Define 6 = e, — ¢y,

Since we obviously have 0 <a-+b<2a< 10a, e is
necessarily less than or equal to e, + 1. We now consider
two cases.

e First case. ¢, = ¢, + 1, in that case,

M, M,
S - Ty TAs1 |
M { 10 105+1J

where [u] is the integer nearest u (with any of the
two possible choices in case of a tie, so that our result
applies for the default roundTiesToEven rounding
attribute, as well as for the roundTiesToAway
attribute defined by IEEE 754-2008). Define p =
10M; — M, (notice that y is an integer), from

M, M, 1< <Ma+ M, +1
10 106+ 2= 777 = 10 100+ 27
we easily deduce
M, M,
— -5 < u<—+5
TR T
which implies
M,
lu| < 10° + 5.

From this we conclude that either s —a is exactly
representable (with exponent e, and significand ),
or we are in the case
[My| € {107 — 4,107 —3,10” — 2,107 — 1},
and 6 =0.
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Notice that if s —a is exactly representable, then it
will be computed exactly by the second operation.
e Second case. ¢, < ¢,. We have

a+b=(10°M, + M,) - 1077,

If e, < ¢, then s = a + b exactly, since s is obtained
by rounding a + b to the nearest multiple of 10% 7!,
which divides 10%?*!. Hence, s — a = b, and s — a is
exactly representable.

If e, > ¢, define 6y = e, — e,. We have

s = [10°"* M, + 107\, | - 10771,

so that
—by 1 es—p+1
10 ~Mb—§ S10%7PT < s—a
< —by 1 es—p+1
< (1072 M, +5 -10% R
which implies
—b; 1 es—p+1
|s—a] < (10 Z|Mb|+§ - 10%7PF

Moreover, ¢; < ¢, = s — a is a multiple of 10% 7+,
say s —a =K - 10e—P+H, We get

100 -1 1
—<10P -1
10 +2* ’

therefore s — a is exactly representable.

1
|K| < 107%| M| +5<

We therefore deduce the following property on the value s
computed after the first step.

Property 1. The value s computed by the first operation of
Algorithm 1 satisfies:

e cither s — a is exactly representable,
e  or we simultaneously have

|M,| € {10P — 4,107 — 3,107 — 2,107 — 1},
€p = €q,
e = e, + 1

3.1.2 Second and Third Operations: z +— RN (s — a) and
t«— RN(b—2)

The second operation is more easily handled. It suffices to

notice that when s —a is exactly representable, then z =

s — a exactly, so that

b—z=b—(s—a)=(a+b)—s.

This means that when s — a is exactly representable, b — z is

the error of the floating-point operation s« RN(a+ b).

Since that error is exactly representable (see for instance

[6]), it is computed exactly, so that ¢t = (a +b) — s.
Therefore, we deduce the following result.

Theorem 4. If a and b are radix-10 floating-point numbers of
precision p, with |a| > |b|, then the value s computed by the
first operation of Algorithm 1 satisfies:
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TABLE 1
Algorithm 1 Is Checked in the Cases
M, € {107 — 4,10 — 3,10 — 2,10 — 1} and M, < M, < 10° — 1

M My = My = My = My =
¢ 10P — 4 10P — 3 10P — 2 107 — 1
10P — 4 OK N/A N/A N/A
10P — 3 OK OK N/A N/A
Wrong: Wrong;:
t=-3, t=-2,
0¥ ~2 QK (a+b)—s|(a+b)—s /2
=—5 =—4
Wrong: Wrong: Wrong: Wrong:
10P — 1 t=—4, t=-3, t=-2, t=-1,
(a+b)—s|(a+b)—s|(a+b)—s|(a+b)—s
= = — — =3 — =

e  cither t is the error of the floating-point addition a + b,
which means that s +t = a + b exactly,
e  or we simultaneously have

|M,| € {10P — 4,107 — 3,107 — 2,107 — 1},
€p = €q,
€s = e, + 1.

3.2 Some Consequences

Let us analyze the few cases for which Algorithm 1 may not
work. Notice that since a and b have the same exponent,
la| > |b] implies |M,| > |M,|. Also, |M,| < 107 — 1. Hence,
when |M| € {107 — 4,107 — 3,107 — 2,107 — 1}, the possible
values of |M,| are limited to

Four cases for |M;,| = 107 — 4;
Three cases for | M| = 107 — 3;
Two cases for | M| = 10 — 2; and

e One case for |M;| =107 — 1.
Also, in these cases, when a and b do not have the same
sign, Algorithm 1 obviously works (by Sterbenz Lemma,
s = a + b exactly, so that z = b and ¢ = 0). Therefore, we can
assume that a and b have the same sign. Without loss of
generality we assume they are positive. It now suffices to
check Algorithm 1 with the 10 possible cases. The results
are listed in Table 1.

From these results, we notice that there are only six cases
where Algorithm 1 does not work. This leads us to the
following result.

Theorem 5. If a and b are radix-10 floating-point numbers of
precision p, with |a| > |b|, then Algorithm 1 always works
(i.e., we always have s+t =a+b, with s= RN(a+Db)),
unless a and b have the same sign, the same exponent, and
their significands M, and M, satisfy:

o |M,| =107 —1 and |M,| > 10" — 4;
e or|M,| =10"—2and |M;| > 107 — 3.

Notice that even in the few (6) cases where Algorithm 1
provides a wrong result, the value of ¢ it returns remains an
interesting “correcting term” that can be useful in summa-
tion algorithms, since s + ¢ is always closer to a + b than s.

Theorem 5 shows that Algorithm Fast2Sum can safely
be used in several cases. An example is addition of a
constant: for instance, computations of the form “a+1,”
quite frequent, can safely be performed whenever |a| > 1.

293

Another very frequent case is when one of the operands
is known to be significantly larger than the other one (e.g.,
we add a small correcting term to some estimate).

4 HALVING AND COMPUTING THE AVERAGE OF TWO
NumBERS IN RADIX 10

In radix 2 floating-point arithmetic, if s is a floating-point

number, then s/2 is computed exactly, provided that no

underflow occurs. This is not always the case in radix 10.
Consider a radix-10 number s:

5 =+5- 1077,

where S is an integer, 10r~! < § < 107 — 1, and consider the
following two cases:

e if §<2-10°7}, then 55 is less than 107, hence s/2 is
exactly representable as 55 -10°7?: it will be com-
puted exactly, with any rounding mode;

e if §>2.10""!, then if S is even, s/2 is obviously
exactly representable as S/2 - 107+ If S is odd, let
k be the integer such that S = 2k + 1. From

s 1
Z_ k’ - 1067p+1
= (brg) 0

we deduce that s/2 is a rounding breakpoint for the
round-to-nearest mode. Therefore (assuming round
to nearest even), the computed value RN(s/2) will
be k-10°P* if k is even, and (k+1)-10¢PH!
otherwise. Let ¢ be that computed result. Notice
that v = 2t is either 2k - 107! or (2k +2) - 107 P*L:
in any case it is exactly representable, hence it is
computed exactly. The same holds for 6 =s—v,
which will be £10°7P*!. This last result is straight-
forwardly exactly divisible by two. We therefore
deduce that the sequence of computations
t=RN(0.5xs), v=RN(2xt); §=RN(s—v), and
r = RN (0.5 x §) will return a value r equal to the
error of the floating-point division of s by two
(notice that 0.5 is exactly representable in decimal
arithmetic).

Now, we easily notice that in all the other cases
(that is, when ¢ is exactly s/2), the same sequence of
operations will return a zero.

This gives us a new error-free transform:

Algorithm 4 (Half-and-error, for radix-10 arithmetic).

t = RN(0.5 x s);
v=RN(2 x t);
6 =RN(s —v);
r = RN(0.5 x §);

The following theorem summarizes what we have
discussed:

Theorem 6. In radix-10 arithmetic, provided that no underflow
occurs (and that |s| is not the largest finite floating-point
number), Algorithm 4 returns two values t and r such that
t = RN(s/2), and t+r=s/2 exactly. Also, r is always
either 0 or £1ulp(s/2).
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Now, let us focus on the computation of the average
value of two floating-point numbers a and b, namely,

a+b
5

Again, in radix-2 arithmetic, the “naive” method that consists
in computing s = RN(a+b) and m = RN(s/2) (or rather,
equivalently, m = RN (0.5 x s)) will obviously give m =
RN (), unless the addition overflows or the division by two
underflows. This is not the case in radix 10. Consider a toy
decimal system of precision p = 3, and the two input numbers
a=1.09and b = 0.195. We get s = RN (a + b) = 1.28, so that
m = RN(s/2) = 0.640, whereas the exact average value p is
0.6425: we have an error of 2.5 units in the last place (one can
easily show that this is the largest possible error, in the
absence of over/underflow).

If a larger precision is available for performing the
internal calculations, then we get a better result: if now s is
a+ b rounded to the nearest in precision p+ d, then the
average value is computed with an error bounded by

1 5
—+=.10
(3+5107)

units in the last place.
If no larger precision is available, we may need to use
different algorithms. Consider for instance,

Algorithm 5. (Average value in any even radix, when a and b
are close)

d = RN(a — b);
h = RN(0.5 x d);
m = RN(a — h);

Theorem 7. If a and b are two decimal floating-point numbers of
the same sign such that 0 <b<a <2bor 2b<a<b<0,
then the value m returned by Algorithm 5 satisfies
m = RN((a+b)/2).

Proof. Without loss of generality we assume that
0<b<a<2b Also assume that a and b have been
scaled to integers without common factors of 10, where b
has at most p digits. By Sterbenz Lemma we have
RN(a — b) = a — b. The proof is now split in two cases:

a — bis even: (a — b)/2 is exactly representable. Hence
m = RN(a— RN((a—b)/2)) = RN((a +)/2).

a—"bisodd: RN((a —b)/2) = (a—b)/2+ 6 (6 = £1/2)
is exactly computable and representable as a p-digit even
integer (since midpoints round to even). Now assume
that a is a p+ k digit integer, with k£ minimal. Then it
follows that k¥ < 1. Consider

RN((a—1b)/2) = (a—b)/2+6,
from which it follows that
a—RN((a—10)/2) =(a+b)/2-6(=(a+bL1)/2),

which is an integer representable on at most p + k digits
(since a and RN((a — b)/2) have the same sign and both
are integers representable on p + k digits).

If k = 0, then obviously m = RN(a — RN((a — b)/2)) =
RN((a +b)/2).
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multiple of ,Hk

Fig. 1. Various computations that can be performed at depth 1.

If k=1, then a is even, hence a — RN((a —1)/2) is
even, thus not a midpoint. Hence rounding to p digits
yields m = RN(a — RN((a —b)/2)) = RN((a +b)/2). O

5 ON THE IMPOSSIBILITY OF COMPUTING
A ROUND-TO-NEAREST Sum

In this section, we are interested in the computation of the
sum of n floating-point numbers, correctly rounded to
nearest. We prove the following result.

Theorem 8. Let a4, as, . .. , a, be n > 3 floating-point numbers of
the same format. Assuming an unbounded exponent range,
and assuming that the radix of the floating-point system is
even, an RN-addition algorithm cannot always return
RN(a; +as + -+ + ay).

If there exists an RN-addition algorithm to compute the
round-to-nearest sum of n floating-point numbers, with
n > 3, then this algorithm must also compute the round-to-
nearest sum of three floating-point values. As a conse-
quence we only consider the case n = 3 in the proof of this
theorem. We show how to construct for any RN-algorithm a
set of input data such that the result computed by the
algorithm differs from the round-to-nearest result.

Proof. Assume a radix-g arithmetic, where § is even. An
RN-addition algorithm can be represented by a directed
acyclic graph* (DAG) whose nodes are the arithmetic
operations. Given such an algorithm, let  be the depth of
its associated graph. First, we consider the input values
a1, as, as defined as follows:

e For a given® integer k, we choose a; = 37 and
ay = (g) B*: a; and ay are two nonzero multiples of
" whose sum is the exact middle of two con-
secutive floating-point numbers;

o a3=¢, with0< g g <pF7 ! forr>1.

Note that when ¢ # 0,

RD(a1 + as + ag)
RU(CLl +as + a3)

if <0,

RN(CL1+CL2+(13):{ if >0

where we may also conclude that RN(a; + as + a3) >
ﬁlﬁp.

The various computations that can be performed “at
depth 1,” ie. immediately from the input to the
algorithm are illustrated in Fig. 1. The value of ¢ is so
small that after rounding to nearest, every operation with
¢ in one of its entries will return the same value as if €
were zero, unless the other entry is 0 or e.

4. Such an algorithm cannot have “while” loops, since tests are
prohibited. It may have “for” loops that can be unrolled.

5. Here k is arbitrary. When considering a limited exponent range, we
have to assume that k + p is less than the maximum exponent.
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An immediate consequence is that after these compu-
tations “at depth 1,” the possible available variables are
nonzero multiples of G* that are the same as if ¢ were 0,
and values bounded by RN(2¢), thus by f|¢| in absolute
value. By induction one easily shows that the available
variables after a computation of depth m are either
nonzero multiples of 3" that are the same as if ¢ were 0,
or values bounded by 3™|¢| in absolute value.

Now, consider the very last addition/subtraction, at
depth r in the DAG of the RN-addition algorithm. Since
RN(a; + az + a3) > "7, one of the inputs of this last
operation is a nonzero multiple of * that is the same as if
e were 0, and the other input is either also a nonzero
multiple of 3* or a value bounded by 3"~!|¢| in absolute
value. In both cases the result does not depend on the
sign of ¢, hence it is always possible to choose the sign of
¢ so that the round-to-nearest result differs from the
computed one. ]

In the proof of Theorem 8, it was necessary to assume an
unbounded exponent range to make sure that with a
computational graph of depth r, we can always build an e
so small that " 'e vanishes when added to any nonzero
multiple of B*. This constraint can be transformed into a
constraint on r related to the extremal exponents ey, and
emax Of the floating-point system. For instance, in radix 2,
assuming e = £2%n and a; = 25" = 2% the inequality
2" 1e| < 2FP71 gives the following theorem.

Theorem 9. Let ay, as, . .., a, be n > 3 floating-point numbers of
the same binary format. Assuming the extremal exponents of
the floating-point format are eyin and emax, an RN-addition
algorithm of depth r cannot always return RN (a; + az +
-+ 4 ay,) as soon as

T S €max — €min — 2p

For instance, with the IEEE 754-1985 double precision
format (e = —1,022, enax = 1,023, p = 53), an RN-addition
algorithm able to always evaluate the round-to-nearest sum
of at least three floating-point numbers (if such an
algorithm exists!) must have depth at least 1,939.

6 CORRECTLY-ROUNDED Sums OF THREE
FLOATING-POINT NUMBERS

We have proved in the previous section that there exist no
RN-addition algorithms of acceptable size to compute the
round-to-nearest sum of n > 3 floating-point values. In [5],
Boldo and Melquiond presented an algorithm to compute
RN(a+ b+ ¢) using a “round-to-odd” addition. Rounding
to odd is defined as follows:

Definition 1 (Rounding to odd).
e if x is a floating-point number, then RO(x) = x;

o otherwise, RO(x) is the value among RD(z) and
RU () whose least significant digit is odd.

The algorithm of Boldo and Melquiond for computing
RN(a+ b+ c) is depicted on Fig. 2. Boldo and Melquiond
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b | /
Error-free addition

e [ w

/

Error-free addition

th, || te |

Odd-rounded addition
| v = RO(ty + uyr) |

Round-to-nearest addition

|z = RN(a+b+c) |

Fig. 2. The Boldo-Melquiond algorithm.

proved their algorithm (provided no overflow occurs) in
radix 2, yet it can be checked that it also works in radix 10.

Rounding to odd is not a rounding mode available on
current architectures, hence a software emulation was
proposed in [5] for radix 2: this software emulation requires
accesses to the binary representation of the floating-point
numbers and conditional branches, both of which are costly
on pipelined architectures.

In the next section, we propose a new algorithm for
simulating the round-to-odd addition of two floating-point
values. This algorithm uses only available IEEE-754 round-
ing modes and a multiplication by the constant 0.5 (and
only in a case where this multiplication is exact), and can be
used to avoid access to the binary representation of the
floating-point numbers and conditional branches in the
computation of RN(a+ b+ ¢) with the Boldo-Melquiond
algorithm. We also study a modified version of the Boldo-
Melquiond algorithm to compute DR(a + b + ¢), where DR
denotes any of the IEEE-754 directed rounding modes.

6.1 A New Method for Rounding to Odd

If we allow multiplication by the constant 0.5 and choosing
the rounding mode for each operation, the following
algorithm can be used to implement the round-to-odd
addition, assuming that the radix 8 of the floating-point
system is even.

For some of the arithmetic operations performed in this
algorithm, the result is exactly representable, so it will be
exactly computed with any rounding mode: hence, for
these operations, we have not indicated a particular
rounding mode.

Algorithm 6 (OddRoundSum(a,b), arbitrary even radix):

d= RD(a+0b);

u= RU(a+0);

ulp =u—d; {exact}
hulp = 0.5 x ulp;  {exact}
e = RN(d + hulp);
d=u—e {exact}
o=0+d; {exact}
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For instance, with 8 = 10,p = 4, a = 2.355,and b = 0.8935,
we successively get d = 3.248, u = 3.249, ulp = 0.001, hulp =
0.0005, e = 3.248, o’ = 0.001, and o = 3.249.

Theorem 10. Let a and b be two floating-point numbers, and
assume that a+0b does not overflow and that “RN”
means round to nearest even. Then Algorithm 6 computes
o= RO(a+Db).

Proof. Since the radix is even, 0.5 = 1/2 is exactly represen-
table. If a+0b is exactly representable, then all the
operations are exact and d =u=a+b, hulp =ulp =0,
e=d, o =0,ando=d=a-+b.

Otherwise d and u are consecutive machine numbers
and ulp is a power of the (even) radix, which cannot be
the minimum nonzero machine number in magnitude
(because an exact representation of a + b takes at least
p + 1 digits). Thus ulp/2 is exactly representable, so that
d + hulp is the exact middle of d and u. Therefore, by the
round-to-nearest-even rule, e is the value, among d and
u, whose last significand digit is even. Then o is the other
one, which is the desired result. O

The only case when this algorithm does not return the
correctly rounded-to-odd value is the (extremely rare) case
when RU(a + b) is infinite whereas RD(a + b) is not.

When the radix is two, itis possible to save an operation, by
replacing the three instructions ulp = u — d, hulp = 0.5 x ulp,
and e = RN(d + hulp) of Algorithm 6 by the two instructions
€ = RN(d+u) and e = ¢ x 0.5. Note that if ¢’ x 0.5 is in the
subnormal range, this means that a+ b is also in the
subnormal range, implying that d =w, and ¢ x 0.5 is
performed exactly.

Algorithm 6 or its binary variant can be used in the
algorithm depicted on Fig. 2 to implement the round-to-odd
addition. Then, we obtain an algorithm using only basic
floating-point operations and the IEEE-754 rounding modes
to compute RN (a + b+ ¢) for all floating-point numbers a,
b, and c.

In Algorithm 6 and its binary variant, note that d and u
may be calculated in parallel and that the calculation of hulp
and e (in the general case, i.e., Algorithm 6 ) or e and o (in
the binary case) may be combined if a fused multiply add
(FMA) instruction is available. On most floating-point units,
the rounding mode is dynamic and changing it requires
flushing the pipeline, which is expensive. However, on
some processors such as Intel’s Itanium, the rounding mode
of each floating-point operation can be chosen individually
[7, Chapter 3]. In this case, the choice of rounding mode has
no impact on the running time of a sequence of floating-
point operations. Moreover the Itanium provides an FMA
instruction, hence the proposed algorithm can be expected
to be a very efficient alternative to compute round-to-odd
additions on this processor.

6.2 Computation of DR(a + b+ ¢)

We now focus on the problem of computing DR(a + b+ c¢),
where DR denotes one of the directed rounding modes (RZ,
RD or RU). The algorithm we consider for DR = RD or RU
(the case DR = RZ will be dealt with later) is a variant of
the Boldo-Melquiond algorithm. The only difference is that
the last two operations use a directed rounding mode. The
algorithm can be summarized as follows:
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Algorithm 7 (DR3(a,b,c)).
(up, ug) = 2Sum(b, c);
(th,te) = 2Sum(a, up);
v = DR(t; + w);
z= DR(t}, +v);

Algorithm 7 computes DR(a+b+c¢) for rounding
downward or upward. However, it may give an incorrect
answer for rounding toward zero.

To prove Algorithm 7, we need to distinguish between
different precisions. To that purpose, we introduce some
notation. Let 3, denote the set of all radix-3, precision-p
floating-point numbers, with an unbounded exponent
range (where, obviously, 5> 2 and p > 1). Given z € R,
we shall denote x rounded downward, rounded upward,
rounded toward zero and rounded to nearest in Fjg, by
RD,(x), RUy(z), RZ)(x), and RN,(z), respectively. Note
that even though these functions depend on the parameter
[, we omit (3 from their indices to make the notation
simpler, since 3 is regarded as fixed; we will even omit the
index p when only precision p is considered, just like in the
other sections of the paper.

Theorem 11. If the radix 8 and the precision p satisfy

e cither5-577 <1,

o or (=2 wherek>1isan integer, and 3 - /P < 1.

Then, given a,b,c € Fg,, and s=a+b+c the exact
sum, and provided no overflow occurs, algorithm DR3

(Algorithm 7) computes z = DR(s).

Notice that the conditions of Theorem 11 become p > 3 in
radix 2, and p > 2 in radix 10.

The assumption that no overflow occurs cannot be
suppressed: for instance, if b+ ¢ overflows whereas the
sum a -+ b+ c is smaller than the overflow threshold, the
algorithm does not work. Underflow is easily dealt with: it
does not hinder the result.

For proving Theorem 11, we use the next two lemmata.

Lemma 12. Let 3> 2 and two precisions p and q such that
q > p. Let DR be one of the directed rounding modes (RZ,
RD, or RU), so that DR, and DR, denote the corresponding
rounding functions in F g, and F g4, respectively. Then for all
z € R, DR,(z) = DR,(DRy(x)).

The proof of Lemma 12 mainly relieson F 3, C F,and on
the fact that both roundings are done in the same direction.

Lemma 13. Let $>2, p>1, and z,y € Fp, such that
T +y & Fpp Wedenote z= RN(x +y).

o If 3 =2 where k > 1 is an integer, then |y| < 2|z|.
e  Forany radix 3, |y| < 2(1+ B'77)|z.

Proof. First, since = +y ¢ F3,, neither x nor y can be 0. If
z and y have the same sign, then |y| < |z| < 2|z|. In the
following, let us assume that # and y have different
signs. Under this condition, Sterbenz’s lemma yields: If
Lyl < |z < 2|y|, then =+ y € F4,. Since by assumption
x + y ¢ fﬂ,p/

e either 1|y| > |z, hence |z + y| = |y| — |z| > 3]yl
e or |z| >2Jy|, hence |z +y| = |z| — |y| > |y|.
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In both cases, |z +y| >3|y|, hence |z| = RN(|z+y|) >
RN(3|y]). If 8 is a power of two, then RN(|y|) =3yl
hence |z| > 1|y|. If no assumption is made on the radix 3,
then we write RN(L|y|) = (1 +¢)i|y|, with [e| <157,
which implies RN (|y|) > 3 (1 —33'7)|y|. A quick calcu-
lation shows that

1 -
—ig7 <@A+67),
as a consequence, |y| < 2(1 + B'77)|z. 0

Proof of Theorem 11. In this proof, let us denote ¢, + u,
by ~, and ¢, +v by 5.
The following two special cases are easily handled:

o Ifa+w, € Fg,, thent, =0, which means that s =
tn + ug; moreover, z = DR(t, +v) = DR(t, + ),
hence z = DR(s).

e Ify=0,then s=t, v=0,and z= DR(s).

Let us now assume that a + u;, ¢ Fg, and v # 0. Since
(tn,te) = 2Sum(a,uy,), then |tg| < %[31’1’|th|, and from |y| <
lug| + [te| we deduce that || < |ug|+35"P[ty]. On the
other hand, since (up,ur) =2Sum(b,c), then |us| <
$8'P|uy|. As a consequence,

1, 1,
1l < 58l + 587l

As (tp, te) = 2Sum(a, up) and ¢, = RN(a + uy), and since
a + uy, does not belong to F 3, by hypothesis, Lemma 13
can be used to bound |up| with respect to [t,]. We
distinguish two cases.

e If §is a power of two, then |uy| <2Jt;|. As a
consequence |y| <33'?|t;|, and since 367 <1,
[y < [tnl. From |s| = [ty 4 t¢ +ue| > [tn] — ||, we
also deduce |s| > (247~ —1)|5|. Since 347 <1
implies 231 —1 > 1, also || < |s].

e Otherwise, one has |uy| < 2(1+ 8*P)|t4], which
gives 1| < (3 + A-7)F 7l < 3670, and
since 53'? <1, |y| < |ts| follows. As |s| > |tn]| —
|7l then |s| > (247! — 1)|4|. Since 53'7 <1 im-
plies 237! —1 > 1, it follows that |y| < |s|.

Therefore, in both cases we have

Y] < [ta] vl < lsl. (1)

Wenow focus on the last two operations in Algorithm 7.
Defining ppr(z) by pro(x) = [z] and pry(z) = [z], one
has

and

v
s' =ty + DRy(t¢ + w) =ty + ppr (ulp,,(v)) ulp, (7).
From the first inequality in (1) it follows that

ulpp(w) < ulpp(th), which implies that ¢, is an integral
multiple of ulp, (7). Since s = t;, + vy, we write

s = (ﬁ + poR (ﬁ) ) ulp,,(7)

= PDR (@) ulp, (7).

Since v # 0 and s # 0, there exists an integer ¢ such that
ulp,(v) = ulpq(s).6 Furthermore, it follows from the
second inequality in (1) that ulp,(y) < ulp,(s), hence
ulp,(s) < ulp,(s), which implies ¢ > p. Hence

, s
= — |ul =D .
¥ = oo o) = DR
Since z = DR,(s'), one has z = DR,(DR,(s)). Then from
Lemma 12, we obtain z = DR,(s). O

The proof cannot be extended to RZ, due to the fact that
the two roundings can be done in opposite directions. For
instance, if s > 0 (not exactly representable) and t; + v, < 0,
then one has RD(s) < RD(s') as wanted, but ¢, + u, rounds
upward and s’ can be RU(s), so that z = RU(s) instead of
RZ(s) = RD(s), as shown on the following counter-exam-
ple. In radix 2 and precision 7, with a = —3,616, b = 19,200
and ¢=-97, we have s=15487, RZ(s)=15,360 and
RU(s) =15,488. Running Algorithm 7 on this instance
gives z = 15,488, so that RU(s) has been computed instead
of RZ(s).

Nevertheless RZ(s) can be obtained by computing both
RD(s) and RU(s), then selecting the one closer to zero using
the minNumMag instruction [11]. This algorithm for
computing RZ(a + b+ ¢) without branches can already be
implemented on the Itanium architecture thanks to the
famin instruction [7].

7 CONCLUSIONS

We have proved that in binary arithmetic Knuth’s 25um
algorithm is minimal, both in terms of the number of
operations and the depth of the dependency graph. We
have investigated the possibility of using the Fast2Sum
algorithm in radix-10 floating-point arithmetic. We have
also shown that, just by performing round-to-nearest
floating-point additions and subtractions without any
testing, it is impossible to compute the round-to-nearest
sum of n > 3 floating-point numbers in even-radix arith-
metic. If changing the rounding mode is allowed, in even-
radix arithmetic, we can implement, without testing, the
nonstandard rounding to odd defined by Boldo and
Melquiond, which makes it indeed possible to compute
the sum of three floating-point numbers rounded to nearest.
We finally proposed an adaptation of the Boldo-Melquiond
algorithm for calculating a 4 b + ¢ rounded according to the
standard directed rounding modes.
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