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Abstract—We present a fast algorithm together with its low-level implementation of correctly rounded arbitrary-precision floating-point

summation. The arithmetic is the one used by the GNUMPFR library: radix 2; no subnormals; each variable (each input and the output)

has its own precision. We also give a worst-case complexity of this algorithm and describe how the implementation is tested.
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1 INTRODUCTION

IN a floating-point system, the summation operation con-
sists in evaluating the sum of several floating-point num-

bers. The IEEE 754 standard for floating-point arithmetic
introduced the sum reduction operation in its 2008 revi-
sion [1, Clause 9.4], but does not provide specifications
except related to special inputs and exceptions; the only
specified finite result is that the result of the sum of 0 num-
bers is defined asþ0. The IEEE 1788-2015 standard for inter-
val arithmetic goes further by completely specifying this
sum operation for IEEE 754 floating-point formats [2,
Clause 12.12.12], in particular requiring correct rounding
and specifying the sign of an exact zero result, but in a way
that is incompatible with IEEE 754-2008 since in particular,
the result of the sum of 0 numbers is �0 in the roundTo-
wardNegative rounding direction.

The articles in the literature on floating-point summation
mainly focus on IEEE 754 arithmetic and consider the float-
ing-point arithmetic operations (þ,�, etc.) as basic blocks; in
this context, inspecting bit patterns is generally not interest-
ing. For instance, fast and accurate summation algo-
rithms are presented by Demmel and Hida [3] and by
Rump [4]. Correct rounding is not provided. On this
subject, the class of algorithms that can provide a cor-
rectly rounded sum of n � 3 numbers is somewhat lim-
ited [5]. In [6], Rump, Ogita and Oishi present correctly
rounded summation algorithms. Kulisch proposes a
quite different solution: the use of a long accumulator
covering the full exponent range (and slightly more to
handle intermediate overflows) [7]. A survey of summa-
tion methods can be found in [8, Section 6.3].

In IEEE 754, the precision of each floating-point format is
fixed. In this paper, we deal with the extension of the sum-
mation operation to arbitrary precision in radix 2, where

each number has its own precision and results must be cor-
rectly rounded, as with the GNU MPFR library1 [9], where
this function is named mpfr_sum. This paper is an extended
version of [10], with an enhanced specification of mpfr_sum
(for backward compatibility with the one from MPFR 3.1
and to follow the usual MPFR rules concerning the function
arguments, but also supporting precision 1, which is a recent
change in the MPFR development) and much more details
(in particular, some important parts of the proofs could not
be given in the previous version of the paper).

Due to the requirements from MPFR, our algorithm is
not based on any previous work, even though one can
find similar ideas used in a different context such as in
[11], which also uses blocks, but in some other way;
indeed, this algorithm from Demmel and Nguyen does
not have the same goals and the data are represented in
a different way:

Demmel/Nguyen mpfr_sum

Model parallel sequential

Precision fixed arbitrary

Accuracy

error bound
involving the

maximum of the
input numbers

correct rounding

Reproducibility yes yes, implied by
correct rounding

Representation floating point based on arrays
of integers

The condition on the accuracy makes a big difference.
Like some other algorithms, Demmel andNguyen’s does not
take a possible cancellation into account; this allows it to be
always fast, but in case of large cancellation, the result will
be very inaccurate in general (if not completely meaning-
less). Conversely, for mpfr_sum, we need to handle cancella-
tion in order to always get an accurate result, which is the
main difficulty; the correct-rounding requirement mainly
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adds more subcases, but it does not introduce additional
issues from a theoretical point of view: we will see that
guaranteeing a correctly rounded result in the difficult cases
(i.e., solving the Table Maker’s Dilemma) is equivalent to the
computation of an accurate sum to a 1-bit target precision.

We first give some notation (Section 2). In Section 3, we
present a brief overview of GMP and GNU MPFR. In Sec-
tion 4, we describe the old mpfr_sum implementation and
explain why a new one was needed. In Section 5, we give
the complete specification of the summation operation in
MPFR. In Section 6, we present the completely new algo-
rithm and implementation; since this is a low-level algo-
rithm, the context of MPFR is quite important for the
details, but the main ideas could be reused in other contexts.
We also give an example in Section 6.5, and an asymptotic
upper bound on the time taken by this algorithm (worst-
case complexity) in Section 6.6. In Section 7, we explain how
mpfr_sum is tested.

This paper is based on the revision 11,319 of sum.c in the
trunk of theMPFR repository2 forMPFR 4.0 (not released yet).

2 NOTATION

We will use ½½ and �� for the bounds of integer intervals, e.g.
½½0; 3�� ¼ f0; 1; 2; 3g and ½½0; 3½½ ¼ f0; 1; 2g.

3 OVERVIEW OF GMP AND GNU MPFR

GNU MPFR is a free library for efficient arbitrary-precision
floating-point computation with well-defined semantics
(copying the good ideas from the IEEE 754 standard), in
particular correct rounding. It is based on GNU MP
(GMP),3 which is a free library for arbitrary-precision arith-
metic; MPFR mainly uses the low-level GMP layer called
“mpn”, and we will restrict to it here. As said on the GMP
web page: “Low-level positive-integer, hard-to-use, very low
overhead functions are found in the mpn category. No memory
management is performed; the caller must ensure enough space is
available for the results.”

In this layer, a natural number is represented by an array
of words, called limbs, each word corresponding to a digit
in high radix (232 or 264). The main GMP functions that will
be useful for us are: the addition (resp. subtraction) of two
N-limb numbers, with carry (resp. borrow) out; ditto
between an N-limb number and a limb; left shift; right shift;
negation with borrow out; complement. For instance,
mpn_add_1 adds a limb to an N-word number, yielding an
N-word number and a carry (0 or 1); this is particularly effi-
cient when the source and the destination N-word numbers
have the same memory location (in-place operation), which
will always be the case in mpfr_sum.

Each MPFR floating-point object (even when it does not
contain a number yet) has its own precision in bits, starting
at 1 for the future MPFR 4.0, which is the target of this
implementation (the minimum precision is 2 in MPFR up to
3.1). All arithmetic operations are correctly rounded to the
precision of the destination number in one of the 5 sup-
ported rounding modes:

� MPFR_RNDN (to nearest, with the even rounding rule),
� MPFR_RNDD (toward �1),
� MPFR_RNDU (toward þ1),
� MPFR_RNDZ (toward zero),
� MPFR_RNDA (away from zero).
Let us describe how MPFR data (numbers and NaN) are

represented. In addition to the precision field (regarded
mainly as a parameter), 3 fields are used to represent non-
zero finite numbers, called regular data: a sign, a significand
(always normalized, with the leading bit 1 represented, and
any trailing bit in the least significant limb being 0) inter-
preted as being in ½1=2; 1½, and an exponent field. Similarly
to the IEEE-754 formats but mainly for a different reason (as
detailed below), not all possible values of the exponent field
correspond to valid exponents. Thus zeros, infinities and
NaN, together called singular data, are represented with
some special values of the exponent field.4 Contrary to IEEE
754, MPFR has only a single kind of NaN and does not have
subnormals (but a function mpfr_subnormalize is pro-
vided to emulate them). The sign field contains a boolean
value and is handled in the same way as in IEEE 754: all
floating-point numbers, including zeros and infinities, are
signed; NaN is not signed, but its sign field can be used by
some operations for (partial) compatibility with IEEE 754.
For singular data, the significand contains garbage.

An important point is that the exponent range can be
very large in MPFR: up to ½½1� 262; 262 � 1�� on 64-bit
machines. In addition to some theoretical issues for the eval-
uation of trigonometric functions, this introduces difficul-
ties in the implementation of various functions (including
mpfr_sum), but is more or less needed as a consequence of
arbitrary precision. On this subject, Section Extended and
extendable precisions of IEEE 754-2008 [1, Clause 3.7] requires
the support of a maximum exponent to be at least 1,000
times the precision for extendable precision formats.

In MPFR, exponents are stored in a signed integer type
mpfr_exp_t. If this type has N value bits, i.e., the maxi-
mum value is 2N � 1, then the maximum exponent range is
defined so that any valid exponent fits in N � 1 bits (sign bit
excluded), i.e., it is ½½1� 2N�1; 2N�1 � 1��; this choice has been
made to allow the sum of two exponents to be representable
in the type, which simplifies the implementation of some
operations (such as the multiplication of two numbers).
This implies a huge gap between the minimum value of the
type MPFR EXP MIN ¼ �2N (or 1� 2N ) and the minimum
valid exponent MPFR EMIN MIN ¼ 1� 2N�1. The maximum
valid exponent is denoted MPFR EMAX MAX ¼ 2N�1 � 1.

This allows the following implementation to be valid in
practical cases. Assertion failures could occur in cases
involving extremely huge precisions (detected for security
reasons). In short, the problem comes from the fact that the
exponent of the kth bit of a MPFR number of exponent e is
e� k, and one may need to be able to represent this value. In
practice, these failures are not possible with a 64-bit ABI due
to memory limits. With a 32-bit ABI, users would probably
reach other system limits first (e.g., on the address space); the

2. https://gforge.inria.fr/scm/viewvc.php/mpfr/trunk/src/sum.
c?revision=11319&view=markup

3. https://gmplib.org/

4. In the earliest versions of MPFR, these singular data were repre-
sented in another way, and changes were done in 2003 for MPFR 2.1.0
in order to reduce the overhead due to singular data, visible in low
precision.
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best solutionwould be to switch to a 64-bit ABI for such com-
putations. MPFR code of some other functions have similar
requirements, which are often not documented. Here, the
problem could be solved with some minor drawbacks, but
this would not currently be interesting in practice.

Note: Unbounded floats, whose exponent is an arbitrary-
precision integer (GMP’s mpz_t type), have been imple-
mented recently by the author of this paper, for some basic
operations. Such a number is like a MPFR number, but with
an additional member to represent the exponent when the
exponent field has the special value MPFR_EXP_UBF. So, lit-
tle change to existing functions was needed to introduce
this support, though it can slightly increase the overhead.
This was useful for a correct implementation of the abþ cd
operation (mpfr_fmma) to avoid intermediate overflows
or underflows, even in corner cases. In the same way,
mpfr_sum could be changed to support unbounded floats;
this could be useful to handle the most difficult cases of cor-
rectly rounded polynomial evaluation. Then, the problem
mentioned in the above paragraph would disappear.

Moreover, most arithmetic operations return a ternary
value, giving the sign of the rounding error. For instance, if
one has

r ¼ mpfr add ða; b; c; MPFR RNDNÞ;

meaning a bþ c, where a has a 3-bit precision,5 b ¼ 5 and
jcj < 1=2, then one will get a ¼ 5, and r will be 0 if c ¼ 0,
negative if c > 0, and positive if c < 0. With MPFR_RNDD,
the ternary value is always negative (inexact result) or zero
(exact result). With MPFR_RNDU, it is always positive (inex-
act result) or zero (exact result).

4 THE OLD MPFR_SUM IMPLEMENTATION

The implementation of mpfr_sum from the current MPFR
releases (up to version 3.1.5) is based on Demmel and
Hida’s accurate summation algorithm [3], which consists in
adding the inputs one by one in decreasing magnitude. But
here, this has several drawbacks:

� This is an algorithm using only high-level opera-
tions, mainly floating-point additions (in MPFR,
mpfr_add). This is the right way to do to get an
accurate sum in true IEEE 754 arithmetic imple-
mented in hardware, but in MPFR, which uses inte-
gers as basic blocks, this introduces overheads, and
more important problems mentioned just below.

� Due to the high-level operations, correct rounding
had to be implemented with a Ziv loop: the working
precision is increased until the rounding can be
guaranteed [9]. In the case of summation, this gives a
time and memory worst-case complexity exponential
in the number of bits of the exponent field. In practice,
this is very slow in some cases, and worse, since the
exponent range can be large, this can yield a crash
due to the lack of memory (and possible denial of ser-
vice for other processes running on themachine).

� Demmel and Hida’s algorithm is based on the fact
that the precision is the same for all floating-point

numbers, meaning that in the MPFR implementa-
tion, the maximum precision had to be chosen. An
alternative would be to split the input numbers to
numbers with the same precision, but this would
introduce another overhead.

Moreover, the sign of an exact zero result is not specified
and the ternary value is valid only when it is zero (a non-
zero return value provides no information).

5 SPECIFICATION OF MPFR_SUM

The prototype of the mpfr_sum function is:

int mpfr sum ðmpfr ptr sum;

const mpfr ptr � x;

unsigned long n;

mpfr rnd t rndÞ

where sum will contain the correctly rounded sum, x is an
array of pointers to the inputs, n is the length of this array,
and rnd is the rounding mode. The return value of type
int will be the usual ternary value. Input pointers are now
allowed to be reused for the output.6

If n ¼ 0, then the result is þ0, whatever the rounding
mode. This is equivalent to mpfr_set_ui and
mpfr_set_si on the integer 0, which both assign a MPFR
number from a mathematical zero (not signed), and this
choice is consistent with the IEEE 754 sum operation of vec-
tor length 0.

Otherwise the result (including the sign of zero) must be
the same as the one that would have been obtained with:

� if n ¼ 1: a copy with rounding (mpfr_set);
� if n > 1: a succession of additions (mpfr_add) done

in infinite precision, then rounded (the order of these
additions does not matter).

This is equivalent to apply the following ordered rules:

(1) If an input is NaN, then the result is NaN.
(2) If there are at least a þ1 and a �1, then the result is

NaN.
(3) If there is at least an infinity (in which case all the

infinities have the same sign), then the result is this
infinity.

(4) If the result is an exact zero:
� if all the inputs have the same sign (thus all þ0’s

or all �0’s), then the result has the same sign as
the inputs;

� otherwise, either because all inputs are zeros
with at least a þ0 and a �0, or because some
inputs are nonzero (but they globally cancel), the
result is þ0, except for the MPFR_RNDD rounding
mode, where it is �0.

(5) Otherwise the exact result is a nonzero real number,
and the conventional rounding function is applied.

6 NEW ALGORITHM AND IMPLEMENTATION

The new algorithm is carefully designed so that the time and
memory complexity no longer depends on the value of the

5. The target precision is attached to the variable (a one-element
array, as in GMP, which is thus passed by reference, or pointer).

6. This was not the case in [10]. So, the algorithm was a bit different
there.
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exponents of the inputs, i.e., the orders of magnitude of the
inputs. Instead of being high level (based on mpfr_add), the
algorithm/implementation is low level, based on integer
operations, equivalently seen as fixed-point operations. Effi-
ciency in case of cancellations and Table Maker’s Dilemma is
regarded as important as for cases without such issues. To be
as fast as possible, we will use the mpn layer of GMP. The
implementation is thread-safe (no use of global data).

As a bonus, this will also solve overflow, underflow and
normalization issues, since everything is done in fixed point
and the exponent of the result will be considered only at the
end (early overflow detection could also be done, but this
would probably not be very useful in practice).

The idea is the following. After handling special cases
(NaN, infinities, only zeros, and fewer than three regular
inputs), we apply the generic case, which more or less con-
sists in a fixed-point accumulation by blocks: we take into
account the bits of the inputs whose exponent is in some
window ½½minexp; maxexp½½, and if this is not sufficient due to
cancellation, then we reiterate, using a new window with
lower exponents. Once we have obtained an accurate sum,
if one still cannot round correctly because the result is too
close to a rounding boundary (i.e., a machine number or the
middle of two consecutive machine numbers), which is the
problem known as the Table Maker’s Dilemma (TMD), then
this problem is solved by determining the sign of the
remainder by using the same method in a low precision.

In order to make the understanding of the algorithm eas-
ier, a simplified example will be given in Section 6.5.7

6.1 Preliminary Steps

We start by detecting the special cases. The mpfr_sum func-
tion does the following.

If n � 2, we can use existing MPFR functions and macros,
mainly for better efficiency since the algorithm described
below can work with any number of inputs (only minor
changes would be needed):

� if n ¼ 0: return þ0 (by using MPFR macros);
� if n ¼ 1: use mpfr_set (which copies a number,

with rounding to the target precision);
� if n ¼ 2: use mpfr_add (which adds two numbers,

with rounding to the target precision).
Now, we have n � 3. We iterate over the n input numbers

to:

(A) detect singular values (NaN, infinity, zero);
(B) among the regular values, get themaximumexponent.
Such information can be retrieved very quickly and this

does not need to look at the significand. Moreover, in the
current internal number representation, the kind of a singu-
lar value is represented as special values of the exponent
field, so that (B) does not need to fetch more data in memory
after doing (A).

In detail, during this iteration, four variables will be set,
but the loop will terminate earlier if one can determine that
the result will be NaN, either because of a NaN input or
because of infinity inputs of opposite signs:

� maxexp, which will contain the maximum exponent
of the inputs. Thus it is initialized to MPFR EXP MIN.

� rn, which will contain the number of regular inputs,
i.e., those which are nonzero finite numbers.

� sign_inf, which tracks the signs of infinite sum-
mands. It is initialized to 0, meaning no infinities
yet. When the first infinity is encountered, this
value is changed to the sign of this infinity (þ1 or
�1). When a new infinity is encountered, either it
has the same sign of sign inf, in which case noth-
ing changes, or it has the opposite sign, in which
case the loop terminates immediately and a NaN
result is returned.

� sign_zero, which will contain the sign of the zero
result in the case where all the inputs are zeros. Thanks
to the IEEE 754 rules, this can be tracked with this
variable alone: There is a weak sign (�1, except for
MPFR_RNDD, where it is þ1), which can be obtained
only when all the inputs are zeros of this sign, and a
strong sign (þ1, except for MPFR_RNDD, where it is
�1), which is obtained in all the other cases, i.e.,
when there is at least a zero of this sign. One could
have initialized the value of sign zero to the weak
sign. But we have chosen to initialize it to 0, which
means that the sign is currently unknown, and do an
additional test in the loop. In practice, one should
not see the difference; this second solution was cho-
sen just because it was implemented first, and on a
test, it made the code slightly shorter.

When the loop has terminated “normally”, the result can-
not be NaN. We do in the following order:

(1) If sign inf 6¼ 0, then the result is an infinity of this
sign, and we return it.

(2) If rn ¼ 0, then all the inputs are zeros, so that we
return the result zero whose sign is given by
sign zero.

(3) If rn � 2, then one can use mpfr_set or mpfr_add
as an optimization, similarly to what was done for
n � 2. We reiterate in order to find the concerned
input(s), call the function and return.

(4) Otherwise we call a function sum_aux, which imple-
ments the generic case. In addition to the parameters
of mpfr_sum, we pass to this function:
� the maximum exponent;
� the number rn of regular inputs, i.e., the number

of nonzero inputs. This number will be used
instead of n to determine bounds on the sum (to
avoid internal overflows) and error bounds.

6.2 Introduction to the Generic Case (sum_aux)

Let us define logn ¼ log2ðrnÞd e.
The basic idea is to compute a truncated sum in the two’s

complement representation, by using a fixed-point accumu-
lator stored in a fixed memory area.

Two’s complement is preferred to the sign + magnitude
representation because the signs of the temporary (and
final) results are not known in advance, and the computa-
tions (additions and subtractions) in two’s complement are
more natural in this context. There will be a conversion to
sign + magnitude (representation used by MPFR numbers)

7. This example is not given earlier because it uses variables intro-
duced during the description of the algorithm, but it may help to look
at it now.
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at the end, but this should not take much time compared to
the other calculations.

The precision of the accumulator needs to be slightly
larger than the output precision, denoted sq, for two reasons:

� We need some additional bits on the side of the most
significant part due to the accumulation of rn values,
which can make the sum grow and overflow without
enough extra bits. The absolute value of the sum is
less than rn � 2maxexp, thus takes up to logn extra bits;
and one needs one more bit to be able to determine
the sign due to two’s complement. So, a total of
cq ¼ lognþ 1 extra bits will be necessary.

� We need some additional bits on the side of the least
significant part to take into account the accumulation
of the truncation errors. The choice of this number dq
of bits is quite arbitrary: the larger this value is, the
longer an iteration will take, but conversely, the less
likely a costly new iteration (due to cancellations
and/or the Table Maker’s Dilemma) will be needed.
In order to make the implementation simpler, the
precision of the accumulator will be a multiple of the
limb size GMP NUMB BITS. Moreover, the algorithm
will need at least 4 bits. The final choice should be
done after testing various applications. In the current
implementation, we chose the smallest value larger
or equal to lognþ 2 such that the precision of the
accumulator is a multiple of GMP NUMB BITS. Since
logn � 2, we have dq � 4 as wanted.

As shown in the figure below, the precision of the accu-
mulator is initially defined as

wq ¼ cq þ sq þ dq

The exponent of the least significant bit (LSB) of the accu-
mulator is denoted by minexp, so that

minexp ¼ maxexpþ cq � wq:

In the accumulation, the selected bits from the inputs will
range from minexp (included) to maxexp (excluded), and the
most significant cq bits can only be reached due to carry
propagation.

When the Table Maker’s Dilemma occurs, the needed pre-
cision for the truncated sum would grow. In particular, one
could easily reach a huge precision with a few small-preci-
sion inputs: for instance, in directed rounding modes, sum
(2E; 2F ) with F much smaller than E. We want to avoid
increasing the precision of the accumulator. This will be done
by detecting the TableMaker’s Dilemma, andwhen it occurs,
solving it consists in determining the sign of some error term.
Thiswill be done by computing an approximation to the error
term in low precision. The algorithm to compute this error
term is the same as the one to compute an approximation to
the sum, the main difference being that we just need a 1-bit
accuracy here. Thus wewill define a function sum_raw, used
for both computations; it is described in the next section.

6.3 The sum_raw Function

The sum_raw function will work in a fixed-point accumula-
tor, having a fixed precision (a multiple of GMP NUMB BITS

bits) and using a two’s complement representation. An itera-
tion will consist in accumulating the bits of the inputs whose
exponents are in ½½minexp; maxexp½½, where maxexp� minexp

is less than the precision of the accumulator: as said above,
we need some additional bits in order to avoid overflows
during the accumulation. On the entry, the accumulator may
already contain a value from previous computations (it is the
caller that clears it if need be): in some cases, some bits will
have to be kept between the two sum_raw invocations.

During the accumulation, the bits of the ith input x[i]
whose exponents are strictly less than minexp form the tail
of this input. When the tail of x[i] is not empty, its expo-
nent ei is defined as the minimum between minexp and the
exponent of x[i]. Thus the absolute value of this tail is
strictly less than 2ei . This will give an error bound on the
computed sum at each iteration: rn � 2supiðeiÞ � 2supiðeiÞþlogn.

At the end of an iteration, we do the following. If the
computed result is 0 (meaning full cancellation), set maxexp
to the maximum exponent of the tails, set minexp so that it
corresponds to the least significant bit of the accumulator,
and reiterate. Otherwise, let e and err denote the exponents
of the computed result (in two’s complement) and of the
error bound respectively. While e� err is less than some
given bound denoted prec, shift the accumulator (as
detailed later), update maxexp and minexp, and reiterate.
For the caller, this bound must be large enough in order to
reach some wanted accuracy. However, it cannot be too
large since the accumulator has a limited precision: we will
need to make sure that if a reiteration is needed, then the
cause is a partial cancellation, so that the determined shift
count is nonzero, otherwise the variable minexp would not
change and one would get an infinite loop. Details and for-
mal definitions are given later.

Notes:

� The reiterations will end when there are no more
tails, but in the code, this is detected only when
needed.

� This definition of the tails allows one to skip poten-
tially huge gaps between inputs in case of full cancel-
lation, e.g., 1þ ð�1Þ þ rwhere r is tiny.

� We choose not to include maxexp in the exponent
interval in order to match the convention chosen to
represent floating-point numbers in MPFR, where
the significand is in ½1=2; 1½, i.e., the exponent of a
floating-point number is the one of the most signifi-
cant bit + 1. Another advantage is that minexp at
some iteration will be maxexp at the next iteration,
unless there is a gap between the inputs (i.e., the
exponent of each tail is less than minexp).

Now let us give the details about this sum_raw function.
In addition to the pointers and sizes of the accumulator and
a preallocated temporary area, it takes the following
arguments:

� wq: precision of the accumulator.
� x: array of the input numbers.
� n: size of this array (number of inputs, regular or not).
� minexp: exponent of the LSB of the first window.
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� maxexp: exponent of the first window (i.e., exponent
of its MSB + 1).

� logn: log2ðrnÞd e, rn being the number of regular
inputs.

� prec: lower bound for e� err (as described above).
� ep: pointer to mpfr_exp_t (see below).
� minexpp: pointer to mpfr_exp_t (see below).
� maxexpp: pointer to mpfr_exp_t (see below).
We require as preconditions (explanations are given

later): prec � 1 and wq � lognþ precþ 2.
This function returns 0 if the accumulator is 0 (which

implies that the exact sum for this sum_raw invocation is
0), otherwise the number of cancelled bits, defined as the
number of consecutive identical bits on the most significant
part of the accumulator.8 In the latter case, it also returns
the following data in variables passed by reference (i.e., via
pointers) unless these pointers are null (such data are useful
only after the first invocation of sum_raw, i.e., after the
main computation, not after the TMD resolution):

� for ep: the exponent e of the computed result;
� for minexpp: the last value of the variable minexp;
� for maxexpp: the last value of the variable maxexp2

(which would be the new value of the variable
maxexp for the next iteration, i.e., the first iteration
of the second invocation of sum_raw in case of TMD
resolution).

Some notation used below:

� EðvÞ: the exponent of a MPFR number v.
� PðvÞ: the precision of a MPFR number v.
� QðvÞ ¼ EðvÞ � PðvÞ: the exponent of the ulp of a

MPFR number v.
A maxexp2 variable will contain the maximum exponent

of the tails. Thus it is initialized to the minimum value of the
exponent type: MPFR EXP MIN; this choice means that at the
end of the loop below, maxexp2 ¼ MPFR EXP MIN if and only
if there are no more tails (this case implies that the truncated
sum is exact). If a new iteration is needed, then maxexp2 will
be assigned to the maxexp variable for this new iteration.

Then one has a loop over the inputs x[i]. Each input is
processed with the following steps:

(1) If the input is not regular (i.e., is zero), skip it. Note:
if there are many zero inputs, it may be more effi-
cient to have an array pointing to the regular inputs
only, but such a case is assumed to be rare, and the
number of iterations of this inner loop is also limited
by the relatively small number of regular inputs.

(2) If Eðx½i�Þ � minexp, then no bits of x[i] need to be
considered here. We set the maxexp2 variable to
maxðmaxexp2; Eðx½i�ÞÞ, then go to the next input.

(3) Now, we have: Eðx½i�Þ > minexp. If the tail of x[i]
is not empty, i.e., if Qðx½i�Þ < minexp, then we set the
maxexp2 variable to minexp.

(4) We prepare the input for the accumulation. In particu-
lar, if its significand is not aligned with the accumula-
tor, then we need to align it by shifting a part of the

significand (containing bits that will be accumulated
at this iteration); the result is stored to the temporary
area, whichmust be large enough, i.e., its bit sizemust
be at least maxexp� minexpþ GMP NUMB BITS� 1.

(5) If x[i] is positive, an addition and carry propaga-
tion toward the most significant bit of the accumula-
tor are done with mpn_add_n followed by
mpn_add_1. There may be still be a carry out, but it
is just ignored; this occurs when a negative value in
the accumulator becomes nonnegative, and this fact
is part of the usual two’s complement arithmetic.

If x[i] is negative, we do similar computations
by using mpn_sub_n and mpn_sub_1 for the sub-
traction and borrow propagation.

Note: The steps 2, 3, and 4 above are currently done by
distinguishing two cases:

It might be possible to merge these cases in a future version
of the code.

After the loop over the inputs, we need to see whether the
accuracy of the truncated sum is sufficient. We first deter-
mine the number of cancelled bits (the number of consecutive
identical bits on themost significant part of the accumulator).
At the same time, we can determine whether the truncated
sum is 0 (all the bits are identical and their value is 0). If it is 0,
we have two cases: if maxexp2 ¼ MPFR EXP MIN (meaning no
more tails), then we return 0, otherwise we reiterate at the
beginning of sum_raw with minexp set to cq þ maxexp2�
wq and maxexp set to maxexp2.

We can now assume that the truncated sum is not 0.
Let us note that our computation of the number cancel

of cancelled bits was limited to the accumulator representa-
tion, while from a mathematical point of view, the binary
expansion is unlimited and the bits of exponent less than
minexp are regarded as 0’s:

So, we need to check that the value cancel matches this
mathematical point of view:

� If the cancelled bits are 0’s: the truncated sum is not 0,
therefore the accumulatormust contain at least a bit 1.

� If the cancelled bits are 1’s: this sequence of 1’s
entirely fits in the accumulator, since the first non-
represented bit is a 0.

8. Note that a value larger than 1 does not necessarily mean that a
cancellation really occurred, due to a possible bias, in particular at the
first iteration because of the cq bits. What matters is that this value pro-
vides a measure of the relative accuracy.
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The analysis belowvirtuallymaps the truncated sum to the
destination without considering rounding yet. Let us denote:
e ¼ minexpþ wq � cancel and err ¼ maxexp2þ logn.

Then e is the exponent of the least significant cancelled bit,
thus the absolute value of the truncated sum is in ½2e�1; 2e�
(binade closed on both ends due to two’s complement). Since
there are at most 2logn regular inputs and the absolute value
of each tail is strictly less than 2maxexp2, the absolute value of
the error is strictly less than 2err. If maxexp2 ¼ MPFR EXP MIN

(meaning nomore tails), then the error is 0.
We need prec � 1 to be at least able to determine the sign

of the result, hence this precondition. Moreover, the fact that
prec is nonnegative allows us to use unsigned integer arith-
metic in the test below in order to avoid a potential integer
overflow.

If e� err � prec, then the sum_raw function returns as
described above.

Otherwise, due to cancellation, we need to reiterate after
shifting the value of the accumulator to the left and updat-
ing the minexp and maxexp variables. Let shiftq denote
the shift count, which must satisfy: 0 < shiftq < cancel.
The left inequality must be strict to ensure termination, and
the right inequality ensures that the value of the accumula-
tor will not change with the updated minexp: shiftq is
subtracted from minexp at the same time. The reiteration is
done with maxexp set to maxexp2, as said above.

Let us give an example. If there is an additional iteration
with maxexp2 ¼ minexp� 4 and a shift of shiftq ¼ 26 bits
(due to cancellation), here is the accumulator before and
after the shift:

We now need to determine the value of shiftq. We pre-
fer it to be as large as possible so that the next iteration will
involve the largest possible number of additional bits of the
summands: this is some form of normalization. Moreover, it
must satisfy the above double inequality and be such that:

(A) the new value of minexp is smaller than the new
value of maxexp, i.e., minexp� shiftq < maxexp2,
which is equivalent to: shiftq > minexp� maxexp2;

(B) overflowswill still be impossible in the new iteration.
Note that since maxexp2 � minexp, (A) will imply

shiftq > 0. And (B) is an extension of shiftq < cancel.
Thus it is sufficient to satisfy (A) and (B).

Since we prefer shiftq to be maximum (and defined
with a simple formula), we focus on (B) first. To avoid an
overflow, it is sufficient that the absolute value of the accu-
mulator at the end of the next iteration be strictly less than
2minexp�shiftqþwq�1 (and this condition is also necessary if the
value is positive). This absolute value will be strictly
bounded by: 2e þ 2err � 21þmaxðe;errÞ. So, in order to satisfy
(B), we can choose

shiftq ¼ minexpþ wq � 2�maxðe; errÞ:

Now, let us prove that for this value, (A) is satisfied.

� If err � e, then by using the precondition prec � 1,
we get:maxðe; errÞ ¼ err < errþ prec.

� If err < e, then the error can be potentially small: to
be able to prove (A), we need to use the fact that the
stop condition was not satisfied, i.e., e� err < prec.
We get:maxðe; errÞ ¼ e < errþ prec.

Thus shiftq > minexpþ wq � 2� err� prec. By using
err ¼ maxexp2þ logn, we get

shiftq � ðminexp� maxexp2Þ > wq � logn� prec� 2 � 0:

The second inequality above comes from the precondition
wq � lognþ precþ 2, which has been chosen for this
purpose.

Note: It is expected in general that when a cancellation
occurs so that a new iteration is needed, the cancellation is not
very large (but this really depends on the problem), in which
case the new additions will take place only in a small part of
the accumulator, except in case of long carry propagation.

6.4 Back to the Generic Case

Let us recall that the accumulator for the summation is
decomposed into three parts: cq ¼ lognþ 1 bits to avoid
overflows, sq bits corresponding to the target precision, and
dq additional bits to take into account the truncation error
and improve the accuracy (dq � lognþ 2 in the current
implementation). Thus wq ¼ cq þ sq þ dq.

A single chunk of memory is allocated for the accumula-
tor and for the temporary area needed by sum_raw; since
maxexp� minexp � wq � cq at each sum_raw iteration (to
avoid overflows), the size chosen for the temporary area is
the smallest one with at least wq � cq þ GMP NUMB BITS� 1

bits. We also chose to allocate memory for the possible TMD
resolution (as explained later) in the same chunk; this second
accumulator will be useless in most cases (it is necessary
only if the TMD occurs and some input is reused as the out-
put), but in the current implementation, it takes at most two
limbs in practice, so that this does not make a noticeable dif-
ference. For performance reasons, the memory is allocated in
the stack instead of the heap if its size is small enough (with
the MPFR_TMP_LIMBS_ALLOCmacro, as often done in other
functions for temporary allocations). No other memory allo-
cationwill be needed (except for auto variables).

Note: Having a small-size accumulator for sum_raw,
either for the main computation or for the TMD resolution,
is not the best choice for the worst-case complexity. For the
time being, we focus on correctness and make sure that the
implementation is fast on almost all cases and not too slow
on corner cases. In the future, we may want to fix a minimal
size for the accumulator or allow it to grow dynamically, for
instance in a geometric progression after a few iterations
(similarly to what is done for Ziv loops in the TMD resolu-
tion for mathematical functions).

The accumulator is zeroed and sum_raw is invoked to
compute an accurate approximation of the sum. Among its
parameters, maxexp was computed during the preliminary
steps, minexp ¼ maxexp� ðwq � cqÞ, and prec ¼ sq þ 3,
which satisfies the wq � lognþ precþ 2 precondition: wq ¼
cq þ sq þ dq � lognþ 1þ sq þ 4 ¼ lognþ precþ 2.
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If sum_raw returns 0, then the exact sum is 0, so that we
just set the target sum to 0 with the correct sign according to
the IEEE 754 rules (positive, except for MPFR_RNDD, where
it is negative), and return with ternary value 0.

Now, the accumulator contains the significand of a good
approximation to the nonzero exact sum. The correspond-
ing exponent is e and the sign is determined from one of the
cancelled bits. The exponent of the ulp for the target preci-
sion is denoted u ¼ e� sq. The exponent stored at maxexpp
(i.e., the last value of the variable maxexp2 in sum_raw) is
denoted maxexp2. We have:

� err ¼ maxexp2þ logn as in sum_raw;
� e� err � prec ¼ sq þ 3.
Thus err � u� 3, i.e., the absolute value of the error is

strictly less than 2�3 times the ulp of the computed value: 2u�3.
Here is a representation of the accumulator and the can-

celled bits, with the two cases depending on the sign of the
truncated sum, where the x’s correspond to the sq � 1 rep-
resented bits following the initial value bit (1 if positive
sum, 0 if negative), r is the rounding bit, and the bits f are
the following bits:

Note that the iterations in sum_raw could have stopped
even in case of important cancellation: it suffices that the
error term be small enough, i.e., where the tails for the last
iteration consisted only of inputs x[i] whose exponent
was very small compared to minexp. In such a case, the bit r
and some of the least significant bits x may fall outside of
the accumulator, in which case they are regarded as 0’s (still
due to truncation). In the following, we will make sure that
we do not try to read nonrepresented bits.

When maxexp2 6¼ MPFR EXP MIN, i.e., when some bits of
the inputs have still not been considered, we will need to
determine whether the TMD occurs. In this case, we will
compute d ¼ u� err, which is larger or equal to 3 (see
above) and can be very large if maxexp2 is very small; never-
theless, d is representable in a mpfr_exp_t since:

� If maxexp2 < minexp, then maxexp2 is the exponent of
an input x[i], so that maxexp2 � MPFR EMIN MIN; and
since u � MPFR EMAX MAX (the maximum valid expo-
nent), we have d � MPFR EMAX MAX� MPFR EMIN MIN,
which is representable in a mpfr_exp_t as per defi-
nition of the MPFR_EMIN_MIN and MPFR_EMAX_MAX

macros in MPFR (see Section 3 about the exponent
range).

� If maxexp2 ¼ minexp, then

d � ðminexpþ wqÞ � maxexp2 ¼ wq;

which is representable in a mpfr_exp_t since this
type can contain all precision values (type
mpfr_prec_t).

The TMD occurs when the sum is close enough to a break-
point, which is defined as a discontinuity point of the func-
tion that maps a real input to the correctly rounded value
and the ternary value. This is either a machine number (i.e.,

a number whose significand fits on sq bits) or a midpoint
between two consecutive machine numbers, depending on
the rounding mode:

Rounding mode Breakpoint

to nearest midpoint
to nearest machine number
directed machine number

(when the sum is close to an sq-bit number and the round-
ing mode is to nearest, the correctly rounded sum can be
determined, but not the ternary value, and this is why the
TMD occurs). More precisely, the TMD occurs when:

� in directed rounding modes: the d bits following the
ulp bit are identical;

� in round-to-nearest mode: the d� 1 bits following
the rounding bit are identical.

Several things need to be considered for the significand,
in arbitrary order:

� the copy of the significand to the destination (if the
destination is used by an input, the TMD may need
to be resolved first);

� a shift (for the normalization), if the shift count is
nonzero (this is the most probable case);

� a negation/complement if the value is negative (can-
celled bits = 1), since the significand of MPFR num-
bers uses the conventional sign + absolute value
representation;

� rounding (the TMD needs to be resolved first if it
occurs).

It is more efficient to merge some of these operations, i.e.,
do them at the same time, and this possibility depends on
the operations provided by the mpn layer of GMP. Ideally,
all these operations should be merged together, but this is
not possible with the current version of GMP (6.1.1).

For practical reasons, the shift should be done before the
rounding, so that all the bits are represented for the round-
ing. The copy itself should be done together with the shift
or the negation, because this is where most of the limbs are
changed in general. We chose to do it with the shift as it is
assumed that the proportion of nonzero shift counts is
higher than the proportion of negations.

Moreover, for negative values, the difference between
negation and complement is similar to the difference
between rounding directions (these operations are identical
on the real numbers, i.e., in infinite precision), so that nega-
tion/complement and rounding can naturally be merged,
as detailed later.

Taking the above remarks into account, we will do the
following:

(1) Determine how the result will be rounded. If the
TMD occurs, it is resolved at this step.

(2) Copy the truncated accumulator (shifted) to the des-
tination. For simplicity, after this step, the trailing
bits of the destination (present when the precision is
not a multiple of GMP NUMB BITS) contain garbage.
Since rounding needs a specific operation on the
least significant limb, these trailing bits (located in
this limb) will be zeroed in the next step.
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(3) Take the complement if the result is negative, and at
the same time, do the rounding and zero the trailing
bits.

(4) Set the exponent and handle a possible overflow or
underflow.

Details for each of these four steps are given below.

6.4.1 Rounding Information / TMD Resolution

The values of three variables are determined:

� inex: 0 if the final sum is known to be exact (which
can be the case only if maxexp2 ¼ MPFR EXP MIN),
otherwise 1.

� rbit: the rounding bit (0 or 1) of the truncated sum,
changed to 0 for halfway cases that will round toward
�1 if the roundingmode is to nearest (so that this bit
gives the rounding direction), as explained below.

� tmd: three possible values: 0 if the TMD does not
occur, 1 if the TMD occurs on a machine number, 2 if
the TMD occurs on a midpoint.

Note: The value of inexwill be used only if the TMDdoes
not occur (i.e., tmd ¼ 0). So, inex could be left indeterminate
when tmd 6¼ 0, but this would not simplify the current code.

This is done by considering two cases:

� u > minexp. The rounding bit, which is represented,
is read. Then there are two subcases:
- Subcase maxexp2 ¼ MPFR EXP MIN. The sum in the

accumulator is exact. Thus inex will be the logi-
cal OR between the rounding bit and the sticky
bit, where the sticky bit is 0 if and only if the bits
following the rounding bit are all 0’s (i.e., the
value is a breakpoint in some rounding mode).
In round to nearest, rbit ¼ 1 will mean that the
value is to be rounded toward þ1, even for half-
way cases as it is easier to handle these cases
now. The variable rbit is initially set to the
value of the rounding bit. We need to determine
the sticky bit (which involves a loop) only if:
� rbit ¼ 0, or
� rbit ¼ 1 and rnd is MPFR_RNDN and the

least significant bit of the truncated sq-bit
significand (i.e., the bit before the rounding
bit) is 0; in such a case, if the sticky bit is 0,
this halfway value will have to be rounded
toward �1, so that rbit is changed to 0.
Note that for sq � 2, the parity of the
rounded significand does not depend on
the representation (two’s complement or
sign + magnitude); that is why, even
though the significand is currently repre-
sented in two’s complement, we round to
even. To illustrate this point, let us give an
example with a negative value:

1110:1100½100000� ðtwo’s complementÞ
1110:1100 ðrounded to evenÞ
0001:0100 ðmagnitudeÞ

where the bits inside the brackets are those
after the truncated sq-bit significand. If we
had converted the accumulator first, we

would have obtained:

0001:0011½100000� ðmagnitudeÞ
0001:0100 ðrounded to evenÞ

i.e., the same result. For sq ¼ 1, the IEEE 754
rule for halfway cases is to choose the value
larger in magnitude, i.e., round away from
zero;9 therefore, in this case, we want to
keep rbit to 1 for positive values, and set it
to 0 for negative values, but it happens that
this corresponds to the rule chosen for
sq � 2 (since the only bit of the truncated
significand is 1 for positive values and 0 for
negative values), so that there is no need to
distinguish cases in the code.

And tmd is set to 0 because one can round cor-
rectly, knowing the exact sum.

- Subcase maxexp2 6¼ MPFR EXP MIN. We do not
know whether the final sum is exact, so that we
set inex to 1. We also determine the value of
tmd as briefly described above (the code is quite
complex since we need to take into account the
fact that not all the bits are represented).

� u � minexp. The rounding bit is not represented (its
value is 0), thus rbit is set to 0. If maxexp2 ¼
MPFR EXP MIN, then both inex and tmd are set to 0;
otherwise they are set to 1 (the bits following the ulp
bit are not represented, thus are all 0’s, implying that
the TMD occurs on amachine number).

We also determine the sign of the result: a variable neg is
set to the value of the most significant bit of the accumula-
tor, and a variable sgn to the corresponding sign. In short:

number neg sgn

positive 0 þ1
negative 1 �1

Now we seek to determine how the value will be
rounded, more precisely, what correction will be done to
the significand that will be copied. We currently have a sig-
nificand, a trailing term t in the accumulator (bits whose
exponent is in ½½minexp; u½½) such that 0 � t < 1ulp (nonnega-
tive thanks to the two’s complement representation), and an
error on the trailing term bounded by t0 � 2u�3 ¼ 2�3ulp in
absolute value, so that the error " on the significand satisfies
�t0 � " < 1ulpþ t0. Thus one has 4 correction cases,
denoted by an integer value corr between �1 and 2, which
depends on ", the sign of the significand, rbit, and the
rounding mode:

�1: equivalent to nextDown;
0: no correction;
þ1: equivalent to nextUp;
þ2: equivalent to two consecutive nextUp.

At the same time, we will also determine the ternary
value and store it in inex. This will be the ternary value
before the check for overflow and underflow, which is done

9. See the discussion http://grouper.ieee.org/groups/754/email/
msg03907.html started by the author in 2009, and the IEEE 754 errata
on http://speleotrove.com/misc/IEEE754-errata.html.
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at the very end of sum_aux with the mpfr_check_range

function (see Section 6.4.4).
To determine corr and the ternary value, we distinguish

two cases:

� tmd ¼ 0. The TMD does not occur, so that the error
has no influence on the rounding and the ternary
value (one can assume t0 ¼ 0). One has inex ¼ 0 if
and only if t ¼ 0, so that inex is currently the abso-
lute value of the ternary value. Therefore we set
corr as follows:
� for MPFR_RNDD, corr ¼ 0;
� for MPFR_RNDU, corr ¼ inex;
� for MPFR_RNDZ, corr ¼ inex && neg;
� for MPFR_RNDA, corr ¼ inex && !neg;
� for MPFR_RNDN, corr ¼ rbit.
We now correct the sign of the ternary value: if
inex 6¼ 0 (i.e., inex ¼ 1) and corr ¼ 0, we set inex
to �1.

� tmd 6¼ 0. The TMD occurs, the exact sum being a
breakpoint þ a small secondary term, and will be
resolved by determining the sign (�1, 0 or þ1) of
this secondary term thanks to a second sum_raw

invocation with a low-precision accumulator.
Note: In the code written before the support of

reused inputs as the output, the accumulator had
already been copied to the destination, so that a part
of the memory of this accumulator could be reused
for the small-size accumulator for the TMD resolu-
tion. This is no longer possible, but currently not a
problem since the accumulator for the TMD resolu-
tion takes at most only 2 limbs in practice; however,
in the future, we might want the accumulators to
grow dynamically, as explained above.

We set up a new accumulator of size cq þ dq

(¼ wq � sq) rounded up to the next multiple of the
word size (GMP NUMB BITS); let us call this size zq (it
will correspond to the variable wq in sum_raw).
From the old accumulator, bits whose exponent is in
½½minexp; u½½ (when u > minexp) will not be copied to
the destination; these bits will be taken into account
as described below.

Let us recall that the d� 1 bits from exponent
u� 2 to u� d (= err) are identical. We distinguish
two subcases:
� Subcase err � minexp. The last two of the d� 1

identical bits and the following bits, i.e., the bits
from errþ 1 to minexp, are copied (possibly
with a shift) to the most significant part of the
new accumulator.

The minexp value of this new accumulator is
thus defined as minexp ¼ errþ 2� zq, so that

maxexp2� minexp

¼ ðerr� lognÞ � ðerrþ 2� zqÞ
¼ zq � logn� 2

� zq � cq:

Therefore the temporary area for sum_raw is
still large enough.

� Subcase err < minexp. Here at least one of the
identical bits is not represented, meaning that it

is 0 and all these bits are 0’s. Thus the accumula-
tor is set to 0. The new minexp value is deter-
mined from maxexp2, with cq bits reserved to
avoid overflows, just like in the main sum.

Then sum raw is called with prec ¼ 1, satisfying the

first sum raw precondition (prec � 1). And we have

zq � cq þ dq � lognþ 3 ¼ lognþ precþ 2;

corresponding to the second sum_raw precondition.
The sign of the secondary term (�1, 0, or þ1), cor-

rected for the halfway cases, is stored in a variable
sst. In details: If the value returned by sum_raw

(i.e., the number of cancelled bits) is not 0, then the
secondary term is not 0, and its sign is obtained from
the most significant bit of the accumulator: positive if
it is 0, negative if it is 1. Otherwise the secondary term
is 0, and so is its sign; however, for the halfway cases
(tmd ¼ 2), we want to eliminate the ambiguity of their
rounding due to the even-rounding rule by choosing
a nonzero value for the sign: �1 if the truncated sig-
nificand (in two’s complement) is even,þ1 if it is odd.

Then, from the values of the variables rnd (round-
ingmode), tmd, rbit (rounding bit), sst (sign of the
secondary term, corrected for the halfway cases), and
sgn (sign of the sum), we determine:
� the correction case corr (integer from �1 to þ2);
� the ternary valueinex (negative, zero, or positive).
Thedifferent cases are summarized inTable 1. The two
lines with “n/a” correspond to halfway cases and are
not possible since sst has been changed to an equiva-
lent nonzero value as said above. The roundingmodes
MPFR_RNDZ andMPFR_RNDA are not in this table since

TABLE 1
Correction Case (corr) and Ternary Value (inex)

Depending on rnd, tmd, rbit, and sst

rnd tmd rbit sst corr inex

N 1 0 � 0 þ
N 1 0 0 0 0
N 1 0 þ 0 �
N 1 1 � þ1 þ
N 1 1 0 þ1 0
N 1 1 þ þ1 �

N 2 0 � 0 �
N 2 0 0 n/a n/a
N 2 0 þ þ1 þ
N 2 1 � 0 �
N 2 1 0 n/a n/a
N 2 1 þ þ1 þ

D 1 0 � �1 �
D 1 0 0 0 0
D 1 0 þ 0 �
D 1 1 � 0 �
D 1 1 0 þ1 0
D 1 1 þ þ1 �

U 1 0 � 0 þ
U 1 0 0 0 0
U 1 0 þ þ1 þ
U 1 1 � þ1 þ
U 1 1 0 þ1 0
U 1 1 þ þ2 þ
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they are handled like MPFR_RNDD and MPFR_RNDU

depending on the value of sgn (MPFR provides inter-
nal macros MPFR_IS_LIKE_RNDD and MPFR_

IS_LIKE_RNDU for this purpose).
As an example, ðtmd; rbitÞ ¼ ð1; 1Þ means that the

truncated sum (i.e., the approximation) is just below a
machine number; moreover, if sst is 0, the exact sum
is this machine number. Thus inex ¼ 0, and
corr ¼ þ1 to get thismachine number.

At this point, the variable inex contains the correct ter-
nary value (before the overflow/underflow detection) and
we know the correction that needs to be applied to the
significand.

6.4.2 Copy/Shift to the Destination

First, we can set the sign of the MPFR number from the
value of sgn.

The bits of the accumulator that need to be taken into
account for the destination are those of exponents in the
interval ½½maxðu; minexpÞ; e½½ (if u < minexp, the nonrepre-
sented bits are seen as 0’s). We distinguish two cases:

� u > minexp. We need to copy the bits of exponents
in ½½u; e½½, i.e., all the bits are represented in the accu-
mulator. One just has a left shift or a copy. In the pro-
cess, some bits of exponent less than u can be copied
to the trailing bits; they are seen as garbage. Since
rounding will need a specific operation on the least
significant limb, these trailing bits (located in this
limb) will be zeroed at the same time in the next step.

� u � minexp. We just have a left shift (bits that are
shifted in are 0’s as specified by GMP, which is what
we want) or a copy, and if there are remaining low
significant limbs in the destination, they are zeroed.

Note: By definition of e, the most significant bit that is
copied is the first bit after the cancelled bits: 1 for a positive
number, 0 for a negative number.

6.4.3 Complement and Rounding

For the moment, let us assume that sq � 2. We distinguish
two cases:

� neg ¼ 0 (positive sum). Since the significand can con-
tain garbage in the trailing bits (present when the pre-
cision is not a multiple of GMP NUMB BITS), we set
these trailing bits to 0 as required by the format of
MPFR numbers. If corr > 0, we need to add corr to
the significand (we can see that this remains valid
even if corr ¼ 2 and the significand contains all 1’s,
which was not obvious). This is done with
mpn_add_1, but corr must be shifted by sd bits to
the left, where sd is the number of trailing bits. If
corr ¼ 2 and sd ¼ GMP NUMB BITS� 1, the mathemat-
ical result of the shift does not hold in the variable; in
this case, the value 1 is added with mpn_add_1 start-
ing at the second limb, which necessarily exists, oth-
erwise this would mean that the precision of the
MPFR number would be 1, and this is not possible
(we assumed sq � 2). In case of carry out, meaning a
change of binade, themost significant bit of the signif-
icand is set to 1 without touching the other bits (this is
important because if corr ¼ 2 and the significand has

only one limb, the least significant nontrailing bit
may be 1), and the variable e is incremented. If
corr < 0, then it is�1, so that we subtract 1 from the
significandwith mpn_sub_1. If theMSB of the signif-
icand becomes 0, meaning a change of binade, then it
is set back to 1 so that all the (nontrailing) bits of the
significand are 1’s, and the variable e is decremented.

� neg ¼ 1 (negative sum). In the positive case, we could
add or subtract a limb to/from a mpn number with a
GMP operation. But here, we want to be able to sub-
tract a limb from a mpn number, and GMP does not
provide such an operation. However, we will show
that this can be emulated (efficiently, though proba-
bly not as much as with just a native operation imple-
mented with highly optimized assembly code, as
usually provided by GMP) with mpn_neg, which
does a negation, and mpn_com, which does a comple-
ment. This allows us to avoid the naive use of sepa-
rate mpn_com (or mpn_neg) and mpn_add_1 (or
mpn_sub_1) operations, which could yield two loops
in some particular cases involving a long sequence of
0’s in the low significant bits.

Let us focus on the negation and complement
operations and what happens at the bit level. For the
complement operation, all the bits are inverted and
there is no dependency between them. The negation
of an integer is equivalent to its complement plus 1:
negðxÞ ¼ comðxÞ þ 1. Said otherwise, after an initial
carry propagation on the least significant sequence of
1’s in comðxÞ, the bits are just inverted, i.e., one has a
complement operation on the remaining bits. This is
whywewill regard complement as the core operation
in the following.

Now,wewant to compute

absðxþ corrÞ ¼ negðxþ corrÞ

¼ negðxÞ � corr

¼ comðxÞ þ ð1� corrÞ;

where �1 � 1� corr � 2. We consider two sub-
cases, leading to a nonnegative case for the correc-
tion, and a negative case:
- Subcase corr � 1, i.e., 1� corr � 0. We first com-

pute the least significant limb by setting the trail-
ing bits to 1, complementing the limb, and adding
the correction term 1� corr properly shifted.
This can generate a carry. In the case where
corr ¼ �1 (so that 1� corr ¼ 2) and the shift
count sd is GMP NUMB BITS� 1, the shift of the cor-
rection term overflows, but this is equivalent to
have a correction term equal to 0 and a carry.
� If there is a carry, we apply mpn_neg on

the next limbs (if the significand has more
than one limb). If there is still a carry, i.e., if
the significand has exactly one limb or if
there is no borrow out of the mpn_neg,
then we handle the change of binade just
like in the positive case for corr > 0.

� If there is no carry, we apply mpn_com on
the next limbs (if the significand has more
than one limb). There cannot be a change
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of binade in this case since a complement
cannot have a carry out.

- Subcase corr ¼ 2, i.e., 1� corr ¼ �1. Here we
want to compute comðxÞ � 1, but GMP does not
provide an operation for that. The fact is that a
sequence of low significant bits 1 is invariant, and
we need to do the loop ourselves in C instead of
using an optimized assembly version from GMP.
However, this may not be a problem in practice,
as the difference is probably not noticeable (any-
way, the source should here be simple enough to
get good code generation by the compiler). When
a limb with a zero is reached (there is at least one
since themost significant bit of the significand is a
0), we compute its complement minus 1 (the
“� 1” corresponds to a borrow in). If there are
remaining limbs, we complement them and a
change of binade is not possible. Otherwise the
complement minus 1 on the most significant limb
can lead to a change of binade; more precisely,
this happens on the significand 01111 . . . 111,
whose complement is 10000 . . . 000 and comðxÞ � 1

is 01111 . . . 111. The change of binade is handled
like in the positive case for corr < 0.

If sq ¼ 1, the solution described above does not work
whenwe need to add 2 to the significand, since 2 is not repre-
sentable on 1 bit. And as this case sq ¼ 1 is actually simpler,
we prefer to consider it separately. First, we can force the
only limb to MPFR LIMB HIGHBIT, which is the value 1 shifted
GMP NUMB BITS� 1 bits to the left, i.e., the limb with the most
significant bit being 1, the other bits being 0 (these are the
trailing bits): this is the only possible significand in precision
1. Now we need to add the correction term, which corre-
sponds to a modification of the exponent. In the positive
case, we just add corr to the variable e (exponent). In the
negative case, as forcing the only limb to MPFR LIMB HIGHBIT

corresponds to the computation of comðxÞ, we just add
1� corr to e, following the formula given in the case sq � 2.

6.4.4 Exponent Consideration

Finally, we set the (maybe out-of-range) exponent of the
MPFR number to e, and check whether e is in the current
exponent range with the mpfr_check_range function as
usual; this function takes the necessary data to be able to
handle a possible overflow or underflow: the current result
(assumed to be correctly rounded with an unbounded expo-
nent range), the current ternary value (giving the sign of the
error), and the rounding mode.

6.5 A Simplified Example

To illustrate the high-level part of the algorithm, we provide
an example, simplified for readability, focusing only on the
main ideas and showing what is computed at each step. In
particular, we will use small blocks, whose sizes have been
fixed manually for the example (such sizes may be impossi-
ble in practice due to constraints on the accumulator size).
Moreover, the numbers are ordered (in the algorithm, the
order does not matter as it has loops over all the numbers);
said otherwise, the value of minexp is chosen in some arbi-
trary way here.

We consider MPFR_RNDD (round toward �1), an output
precision sq ¼ 2, and rn ¼ 9 regular input numbers, each
with its own precision, corresponding to the number of dig-
its of the fraction part, as written below

x0 ¼ þ0:10011101000010 � 20

x1 ¼ �0:100001 � 20

x2 ¼ �0:11000011 � 2�3

x3 ¼ �0:11101 � 2�9

x4 ¼ �0:1101000 � 2�10

x5 ¼ þ0:10111111011 � 2�1000

x6 ¼ þ0:110 � 2�1009

x7 ¼ þ0:10000 � 2�1009

x8 ¼ �0:10000 � 2�2000

:

The splitting into blocks (determined after each iteration)
of the main computation will occur as follows. A dot corre-
sponds to a nonrepresented digit (0) in the block. A double
bar corresponds to a zeroed accumulator (with a gap in the
exponents for the second one).

On this example, we have the following 3 iterations,
where prec ¼ sq þ 3 ¼ 5.

� First iteration: ½½minexp; maxexp½½ ¼ ½½�9; 0½½. Here, we
have maxexp ¼ 0 because the maximum exponent of
the input numbers is 0. In this window, only 3 input
numbers are concerned, and we have the following
computation:

The digits in the square brackets are those
outside the window, thus are ignored at this
iteration.

During the same loop over all the input num-
bers, we compute the next maxexp value: Let T ¼
fi : QðxiÞ < minexpg be the set of the indices of
nonempty tails, here all the indices except 1 (since
x1 has entirely been taken into account). Then

maxexp2 ¼ sup
i2T

ei ¼ minexp ¼ �9;

since e0 ¼ minexp (ditto for e2).
We have computed an approximation to the sum

and we have an error bound 2err, where err ¼
maxexp2þ logn ¼ ð�9Þ þ 4 ¼ �5.

We have e� err ¼ ð�7Þ � ð�5Þ ¼ �2 < prec, so
that we need at least another iteration.

� Second iteration: ½½minexp; maxexp½½ ¼ ½½�19;�9½½. One
gets:
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The truncated sum is 0: we have a full cancella-
tion. And T ¼ f5; 6; 7; 8g, so that maxexp2 ¼ �1000
(from x5): there is a big gap in the exponent values.
The next iteration will be done with maxexp set to
maxexp2, which is the maximum exponent of the
remaining numbers (thus a bit like the first iteration).

� Third iteration: ½½minexp; maxexp½½ ¼ ½½�1009;�1000½½.

The truncated sum is 0:101111110 � 2�1000 (with
the first 9 bits of x5). We have e� err ¼ ð�1000Þ �
ð�1009þ 4Þ ¼ 5 � prec, so that the truncated sum is
accurate enough.

We nowknow a good approximation to the exact sum, but
this exact sum is close to a machine number (the rounding bit
1 is followed by a long sequence of 1’s), so that we need a
TMD resolution. The accumulator will be set to the value
�2�1008 (110 from the least significant part of the truncated
sum, followed by 0’s). The first iteration of the second call to
sum_raw computes:

We have a full cancellation. If we did not have x8 in the array,
then this would be the case D / 1 / 1 / 0 of Table 1, giving
corr ¼ þ1 to get 0:11 � 2�1000 and a null ternary value. With
x8, we are in the case D / 1 / 1 / �, giving corr ¼ 0 to get
0:10 � 2�1000 and a negative ternary value.

6.6 Worst-Case Complexity

We now seek to find an asymptotic upper bound on the
time taken by this algorithm. We consider an abstract
machine similar to an actual computer, but whose registers
associated with some types (size, precision, exponent) are
unbounded, and an operation on a register takes a unit of

time; however, limbs have a fixed size.10

The parameters of our model are the length n of the array
of MPFR data, the total bit size pin of the significands of the
inputs, the bit size pout of the significand of the output (i.e.,
the target precision), and the bit size w of the exponent field
of a MPFR number. The complexity here will not depend on
w, but we include this parameter in our model to clearly
express this fact: if w were regarded as a constant, there
could be a huge constant hidden behind the OðÞ notation,
but this is not the case here. For instance, the old algorithm
had a 2w in its worst-case complexity.

The part of the algorithm that takes most of the time in
the worst case is in the first call to sum_raw, where
wq ¼ Oðpout þ lognÞ; in the second call, we just have wq ¼
OðlognÞ. Here we have two nested loops as explained in
Section 6.3:

� the OðpinÞ iterations computing the sum in some
exponent window, done until the result is accurate
enough (each iteration consumes at least one bit of
the inputs);

� the OðnÞ iterations over each summand.
The internal loop contains operations in OðwqÞ, thus in

Oðpout þ lognÞ. The loops in other parts of the algorithm are
either in OðnÞ or in OðwqÞ, thus do not increase the complex-
ity obtained from the above nested loops. Therefore the
worst-case complexity of this algorithm is in Oðpin � n�
ðpout þ lognÞÞ.

This bound can be reached by using only input numbers
with 1-bit precision chosen so that the following occurs at
each iteration of the outer loop. From an accumulator con-
taining zero:

(1) Add 2maxexp�1.
(2) Add �2minexp (! long carry propagation).
(3) Add 2minexp (! long carry propagation).
(4) Add �2maxexp�1.
And the accumulator is back to zero for the next iteration.

Due to the long carry propagations, the pout þ logn bound
(with a constant factor) is reached in the inner loop. Only 4
bits are consumed at each iteration, so that there will be
pin=4 iterations. Thus the time taken is at least some constant
times pin � n � ðpout þ lognÞ.

However, since the parameters are not independent in
the above example (n � pin and w � log2ðpinÞ þ constant),
this does not mean that this bound cannot be improved.

Note: It is possible to obtain Oðn � lognþ pin � ðpoutþ
lognÞÞ if the inputs are initially sorted by decreasing magni-
tude and are removed from the list (in constant time) once
all their bits have been consumed.

7 TESTING

Different kinds of tests are done. First, there are usual generic
random tests, with limited precisions and exponent range:
the exact sum is computed with basic additions (mpfr_add)
with enough precision, then rounded to the target precision,
allowing us to check the result of mpfr_sum. Note that this
test could be able to detect bugs in either mpfr_add or
mpfr_sum; it is very unlikely to get a same wrong result for
both computations, because completely different algorithms
are used (when the array has at least 3 regular numbers).

As usual, cases involving singular values are also tested.
In particular, tests are done with an array of 6 values and
every combination of values among NaN, þ1, �1, þ0, �0,
þ1 and �1.

We have some specific tests to trigger particular cases in
the implementation, the goal being to have a high code cov-
erage. For instance, the sum of 4 numbers i � 246 þ j � 245þ k �
244 þ f � 2�2 with �1 � i; j; k � 1, i 6¼ 0 and �3 � f � 3 is
tested with the target precision chosen to have the ulp of the
exact sum equal to 20 or to 244 (all the cases satisfying these
conditions are tested).

10. The reason is that we express the precision in bits. Alternatively,
we could have chosen to express the precision in limbs and let the limb
size vary; but this makes less sense due to the use of bit operations such
as count_leading_zeros (CLZ), which may be implemented with a
loop on some machines and would not take a unit of time.
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Code (not enabled by default) has been introduced in the
mpfr_sum implementation to be able to check some com-
bined parameter value coverage in the TMD cases, allowing
us to make sure that all allowed combinations of rounding
mode, tmd value (1 or 2), rbit value, sign of the secondary
term and sign of the sum are tested.

We have generic random tests with cancellations. This is
doneby startingwith somearrayof randomnumbers, then com-
puting a correctly rounded sum with mpfr_sum, and append-
ing the opposite value to the array, so that the next mpfr_sum
call will have cancellations.We reiterate several times.

Finally,we also have testswith underflows and overflows.
We have also done timings on pseudo-random inputs

with various sets of parameters: size n ¼ 101, 103 or 105; small
or large input precision (all the inputs have the same preci-
sion precx in these tests); small or large output precision
precy; inputs uniformly distributed in ½�1; 1�, or with scaling
by a uniform distribution of the exponents in ½½0; 108½½; test of
partial cancellation. Comparison has been done with the old
implementation and with a basic sum implementation using
mpfr_add (thus inaccurate and possibly completely wrong
in case of cancellation). Timings can vary a lot between one
invocation to another on the same data: factors larger than 3
have sometimes been observed! However, this can be
regarded as acceptable since the implementations can differ
by larger factors, and we are mostly interested in such big
differences. This shows that the new implementation per-
forms incredibly well, being much faster than the old imple-
mentation in most cases, except in the pathological cases
where precy	 precxwith an important cancellation, where
it is much slower due to the reiterations always done in a
small precision (this might be solved in the future). In some
cases, the new mpfr_sum is even much faster than the (inac-
curate) basic sum implementation. Sources and timing
results are available in the MPFR repository: https://gforge.
inria.fr/scm/viewvc.php/mpfr/misc/sum-timings/.

8 CONCLUSION

We have designed and implemented a new algorithm to
compute the correctly rounded sum of several floating-
point numbers in radix 2 in arbitrary precision for GNU
MPFR, where each number (the inputs and the output) has
its own precision. Together with the sum, the sign of the
error is returned too.

The description in the paper gives a proof of the algorithm
and implementation at some level of details. Since it is almost
impossible to guarantee that a proof like that covers every-
thing, the quality of the test suite is important. Various kinds
of tests are included inMPFR, and good coverage, in particu-
lar combined parameter value coverage in some cases, is
checked. Since not all C implementations and not all value
combinations can be tested, a formal proof would be useful,
but it would have to be expressed in a very low level.

One of the main goals was to make sure that this algo-
rithm is efficient in any corner case. This is particularly
important to avoid denial of service in a client-server sys-
tem. Contrary to the initial algorithm, the worst-case com-
plexity is now polynomial: Oðpin � n � ðpout þ lognÞÞ in the
model defined in Section 6.6 (similar to word complexity),
where pin is the total bit size of the significands of the inputs,
n is the length of the array of MPFR data, pout is the bit size
of the significand of the output (i.e., the target precision),

and the bit size of the exponent field is allowed to vary (the
complexity of this algorithm does not depend on it); this
bound can be reached on some class of instances.

In future work, one may try to say more about the worst-
case complexity. For instance, can the above bound be
improved for this algorithm? What other bounds could one
get if the parameters are changed (e.g., considering the max-
imum precision of the input numbers instead of the sum pin
of their precisions)?

Future work will also consist in finding real applications
to check whether we may want to modify some parameters.
For instance, the precision of the accumulator may be
increased if need be.
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