
The Euclidean Division Implemented with

a Floating-Point Multiplication and a Floor∗

Vincent Lefèvre

11th July 2005

Abstract

This paper is a complement of the research report The Euclidean di-
vision implemented with a floating-point division and a floor, RR-5604,
INRIA, June 2005. Here we study conditions under which the floor of an
exact product (or the Euclidean division, when the divisor can be known
in advance) can be implemented using a floating-point multiplication fol-
lowed by a floor function. The example of the Euclidean division by 3 is
given.

1 Introduction

A similar problem to the one dealt with in [3] is whether ⌊⋄(x.z)⌋ = ⌊x.z⌋. It is
not clear whether this is interesting in practice; but in the division problem, if y
is a constant, then performing a multiplication by a precomputed approximate
value z of 1/y would be faster than performing a division by y. This is not
exactly the same problem, though. Indeed, even if the above equality is satisfied,
this does not imply that ⌊⋄(x.z)⌋ = ⌊x/y⌋ would be satisfied too, as z is only an
approximation to 1/y. However y may also be only an approximation to some
real value, such as 2π; such Euclidean divisions occur in the range reduction to
implement the trigonometric functions.

2 The Floor of a Floating-Point Product

First, let us analyze the problem of whether the equality ⌊⋄(x.z)⌋ = ⌊x.z⌋ is
always satisfied or not, where x and z are both representable floating-point num-
bers. We assume that the arithmetic has no intermediate extended precision,
and to make the discussion simpler, we just consider the rounding problems,

∗This preprint comes from a section that was removed from [3]. Please refer to it for the
context and the notations.

intdiv-mul.tex 7816 2005-07-11 13:54:16Z lefevre – page 1



i.e. we ignore the possible limitations due to the exponent range. For symmetry
reasons, we also assume that x and z are nonnegative numbers.

The exact result of the multiplication x.z is denoted u, and we assume that
u < 2n (i.e. a constraint similar to x/y ≤ 2n in [3, Section 3]).

In the rounding downward mode, we always have ⌊⋄(x.z)⌋ = ⌊x.z⌋ for the
same reasons as with the division (see [3, Section 3.1]).

Now, let us consider the rounding to nearest mode. The rounding rule in
case of tie can be important here, so let us talk about it. In general (e.g., with
the IEEE-754 standard), one rounds to the number that has an even mantissa;
this choice is always unique for precisions larger or equal to 2. But one may
also choose to round away from 0; however, in general, this rule is chosen in
a different context: for instance, the round function to round to the nearest
integer. This rule is still interesting to consider since this is the worst choice in
our context and also because it is more regular. Note that ⌊⋄(u)⌋ will give the
same result with both rounding rules if u ≤ 2n−1. Indeed, if u is exactly the
middle of two consecutive representable numbers, the inequality ⌊⋄(u)⌋ 6= ⌊u⌋
can occur only when u has the following form:

u1u2 . . . ur. 111 . . . 111
︸ ︷︷ ︸

n + 1 − r bits

. . .

with 0 ≤ r ≤ n. If r < n, then the n-th bit in u is always 1, therefore the
even mantissa is obtained when rounding upward. Thus a difference between
these two rules may occur only when r = n, i.e. u > 2n−1; these cases are not
common. So, for the sake of simplicity, we just consider the rule “round away
from 0” in halfway cases.

For any u < 1/2, the equality ⌊⋄(u)⌋ = ⌊u⌋ is satisfied. So, in the follow-
ing, let us assume that 1/2 ≤ u < 2n and let fu be the number of fractional
bits when the mantissa of u is truncated to the precision of the system, i.e.
fu = n − 1 − ⌊log2(u)⌋. We also define the position of the bits in the exact
mantissa of u as follows: The most significant bit (always equal to 1) has the
position 0, the following bit has the position 1, and so on, up to the position
2n − 1, since the exact mantissa of u can be written on at most 2n bits.

Let m be the number of 1’s immediately following the fractional point of
u. If m ≤ fu, then the equality ⌊⋄(u)⌋ = ⌊u⌋ is satisfied. If m > fu, then this
equality is not satisfied.

Moreover when x or z is multiplied by a power of two, the result u = x.z has
the same exact mantissa. So, to build a failing case, x and z can be adjusted to
put the fractional point where we want (but not farther than the first n bits, so
that u < 2n). For instance, if the bit at position n is a 1, then we can scale x
or z in such a way that ⌊⋄(u)⌋ 6= ⌊u⌋. But on such an example, u is very large:
u ≥ 2n−1. However, with a stronger condition on u (i.e., on x and z), we can
get smaller cases: for instance, if the bits r, r + 1, . . . , n− 1, n are all equal to
1, then we have a failing case such that 2r−1 ≤ u < 2r.

intdiv-mul.tex 7816 2005-07-11 13:54:16Z lefevre – page 2



We have an obvious worst case: x = 1 + 21−n and z = 1 − 21−n, leading to
u = 1−22−2n. And we can even restrict the precision on x and z: for x = 1+2−q

and z = 1−2−q, we have u = 1−2−2q; and if q > n/2, then 1−2−n−1 ≤ u < 1,
and ⋄(u) = 1. Hence ⌊⋄(u)⌋ 6= ⌊u⌋.

If z is fixed, then one can try to build failing cases by choosing the largest
representable number xk < k/z, for k = 1, 2, 3, etc. The analysis in the
following sections is based on a similar idea.

3 Implementing a Division with a Floating-Point

Multiplication

We now assume that y is a positive real constant (not necessarily representable,
like 2π) and x is any floating-point number such that 0 ≤ x/y < 2n, and we
wish to obtain ⌊x/y⌋ by approximating 1/y by some precomputed floating-point
number z = 1/y + ε and computing ⌊⋄(x.z)⌋ in some rounding mode ⋄. This is
possible if and only if for all x, we have: ⌊⋄(x.z)⌋ = ⌊x/y⌋.

When y is a floating-point number, a related problem is whether we have
⋄(x.z) = ⋄(x/y) for all x. In the rounding to nearest mode, there would be very
few floating-point numbers y satisfying this condition, according to [1]. So, this
will not help us in the following.

Since the multiplication by the constant z, the chosen rounding function
⋄ and the floor function are all non-decreasing functions, we can deduce that
the function f defined by f(x) = ⌊⋄(x.z)⌋ is also non-decreasing. Thus it is
sufficient to consider it on the boundary values xk = △(k.y) and x−

k for any
integer k from 1 to 2n, where △ denotes the rounding upward mode and x− the
largest floating-point value less than x.

Indeed, x being a floating-point number, we have:

x/y ≥ k ⇔ x ≥ k.y ⇔ x ≥ xk

from the definition of △, and

x/y < k ⇔ x ≤ x−

k .

Therefore

⌊x/y⌋ = k ⇔ k ≤ x/y < k + 1 ⇔ xk ≤ x ≤ x−

k+1
.

Since f is non-decreasing, we have:

∀x ∈ [xk, x
−

k+1
], f(x) = k ⇔ f(xk) ≥ k and f(x−

k+1
) ≤ k.

Now let us consider good candidates for z. If 1/y is exactly representable,
we can choose z = 1/y; this case has already been dealt with in Section 2. So,

intdiv-mul.tex 7816 2005-07-11 13:54:16Z lefevre – page 3



let us assume that 1/y is not exactly representable and let us denote the two
floating-point numbers enclosing 1/y by z− = ▽(1/y) and z+ = △(1/y).

If y is exactly representable and we choose z−, then we can rule out the
rounding downward mode, as x1.z

− = y.z− < y/y = 1. Tests of some integers
y using the MPFR library [2] show that the results depend very much on y (in
fact, the binary expansion of 1/y) and the precision. The next section just gives
an example: y = 3. Future work could consist in finding general properties.

4 An Example: y = 3

In this section, we consider the simple case y = 3. For each rounding mode ⋄,
we are interested in knowing under what conditions we have ⌊⋄(x.z)⌋ = ⌊x/3⌋,
where the floating-point number z is either z− = ▽(1/3) or z+ = △(1/3).

Thanks to the tests with MPFR, we could guess some properties. These
properties depend on the parity of the precision of the floating-point system;
this is not surprising as the binary expansion of 1/3, 0.010101 . . ., has a periodic
sequence of length 2. So, we need to consider odd precisions (4.1) and even
precisions (4.2) separately. The precision 2 has some different properties, and as
it is neither common nor useful, we will not consider it here. To do a comparison
with the division (4.4), we will also need to find the smallest positive value of
x such that ⌊⋄(x/3)⌋ 6= ⌊x/3⌋ (4.3).

In the proofs below, we will need the following lemma.

Lemma 1 If u is a positive floating-point number in a system with a man-
tissa size of n bits and u− denotes its predecessor (with an unbounded exponent
range), then u− = u(1 − ε), where ε satisfies 2−n ≤ ε < 21−n.

4.1 Odd Precisions for n ≥ 3

We have: z− = (1 − 2−n−1)/3 and z+ = (1 + 2−n)/3. We seek to prove the
following guessed properties:

1. In the rounding upward mode, ⋄(x−

5 .z−) ≥ 5. Therefore we also have
⋄(x−

5 .z+) ≥ 5, and this rounding mode is not interesting.

2. In the rounding to nearest mode, ⋄(x−

1 .z+) ≥ 1.

3. In the rounding to nearest mode, ⋄(x−

k .z−) < k and ⋄(xk.z
−) ≥ k for all

integer k ≤ 2n.

4. In the rounding downward mode, ⋄(x−

k .z+) < k and ⋄(xk.z
+) ≥ k for all

integer k ≤ (2n − 2)/3, but ⋄(x−

k .z+) = k for k = (2n + 1)/3.

intdiv-mul.tex 7816 2005-07-11 13:54:16Z lefevre – page 4



Proof of Property 1 for odd precisions. We want to prove that
⋄(x−

5 .z−) ≥ 5 in the rounding upward mode.

For n ≥ 5, 15 is exactly representable, therefore x5 = 15 and x−

5 = 15−24−n.
If n = 3, then 15 is not representable, and x−

5 = ▽(15) = 14 > 15 − 24−n.
Therefore, for any odd integer n, we have:

x−

5 .z− ≥ (15 − 24−n)(1 − 2−n−1)/3 = 5 − ε

with:

ε =
1

3
(24−n + 15 × 2−n−1 − 23−2n)

=
1

3
(47 × 2−n−1 − 23−2n)

< 16 × 2−n−1 = 23−n.

It follows that x−

5 .z− > 5 − 23−n = 5−. Hence ⋄(x−

5 .z−) ≥ 5. �

Proof of Property 2 for odd precisions. We want to prove that
⋄(x−

1 .z+) ≥ 1 in the rounding to nearest mode.

As 3 is exactly representable, we have:

x−

1 .z+ = (3 − 22−n)(1 + 2−n)/3 = 1 − ε, with ε =
2−n(1 + 22−n)

3
.

Since n ≥ 3, we have: 22−n ≤ 1/2, and ε ≤ 2−n−1. As a consequence,
x−

1 .z+ ≥ (1 + 1−)/2, and ⋄(x−

1 .z+) ≥ 1 since in Section 2, we chose to round
away from zero in case of tie (but we recall that the rounding-to-even-mantissa
rule would have given here the same result). �

Proof of Property 3 for odd precisions. We want to prove that in the
rounding to nearest mode, ⋄(x−

k .z−) < k and ⋄(xk.z
−) ≥ k for all integer k ≤ 2n.

From the lemma in a system with n + 1 bits, we have:

k(1 − 2−n) ≤
k + k−

2
≤ k(1 − 2−n−1).

First let us consider xk.z
−. We have xk ≥ 3k, thus xk.z

− ≥ k(1 − 2−n−1).
Due to the above inequality, it follows that xk.z

− ≥ (k + k−)/2. Hence
⋄(xk.z

−) ≥ k.

Now let us consider x−

k .z−. If 3k is exactly representable, then, from the
lemma, x−

k ≤ 3k(1 − 2−n); therefore

x−

k .z− < x−

k /3 ≤ k(1 − 2−n) ≤ (k + k−)/2,

intdiv-mul.tex 7816 2005-07-11 13:54:16Z lefevre – page 5



i.e. x−

k .z− < (k + k−)/2. Now assume that 3k is not exactly representable.
Then 3k ≥ 2n + 1, x−

k ≤ 3k − 1 and

x−

k .z− ≤
(3k − 1)(1 − 2−n−1)

3
= k −

1

3
− k.2−n−1 +

2−n−1

3
.

Since 3k ≥ 2n + 1, we have: k.2−n−1 ≥ 1/6 + 2−n−1/3, where the equal-
ity occurs if and only if 3k = 2n + 1. Therefore x−

k .z− ≤ k − 1/2, where
the equality occurs if and only if 3k = 2n + 1. If (2n + 1)/3 ≤ k < 2n−1,
then x−

k .z− < k − 1/4 = (k + k−)/2. Otherwise 2n−1 < k < 2n and
x−

k .z− < k − 1/2 = (k + k−)/2. �

Proof of Property 4 for odd precisions. We want to prove that in the
rounding downward mode, ⋄(x−

k .z+) < k and ⋄(xk.z
+) ≥ k for all integer

k ≤ (2n − 2)/3, but ⋄(x−

k .z+) = k for k = (2n + 1)/3.

First let us assume that k ≤ (2n − 2)/3; this means that 3k is exactly
representable. Concerning the second inequality, since xk = 3k and z+ > 1/3,
we have xk.z

+ ≥ k, which is exactly representable, therefore ⋄(xk.z
+) ≥ k.

Concerning the first inequality, we have x−

k ≤ 3k(1−2−n) from the lemma, and
x−

k .z+ ≤ k(1− 2−2n). Since x−

k .z+ < k, which is exactly representable, we have
⋄(x−

k .z+) < k.

Now assume that k = (2n+1)/3. Then x−

k = 2n and x−

k .z+ = (2n+1)/3 = k,
which is exactly representable. Therefore ⋄(x−

k .z+) = k. �

We proved that for 0 ≤ x ≤ 2n − 2, we have ⌊⋄(x.z+)⌋ = ⌊x/3⌋, and for
x = 2n, this equality is no longer satisfied. We can prove a little more. Indeed,
there is a representable floating-point number between 2n − 2 and 2n: 2n − 1.
If x = 2n − 1, then x.z+ = (2n − 2−n)/3. Therefore

2n − 2

3
< ⋄(x.z+) <

2n + 1

3
and

⌊
⋄(x.z+)

⌋
=

2n − 2

3
= ⌊x/3⌋ .

So, for 0 ≤ x ≤ 2n − 1, we have ⌊⋄(x.z+)⌋ = ⌊x/3⌋.

4.2 Even Precisions for n ≥ 4

We have: z− = (1 − 2−n)/3 and z+ = (1 + 2−n−1)/3. We seek to prove the
following guessed properties:

1. In the rounding upward mode, ⋄(x1.z
−) < 1 and ⋄(x−

1 .z+) = 1. Therefore
this rounding mode is not interesting.

2. In the rounding to nearest mode, ⋄(x1.z
−) < 1 and ⋄(x−

5 .z+) = 5. There-
fore this rounding mode is not interesting.

3. In the rounding downward mode, ⋄(x−

k .z+) < k and ⋄(xk.z
+) ≥ k for all

integer k ≤ (2n+1 − 2)/3, but ⋄(x−

k .z+) ≥ k for k = (2n+1 + 1)/3.

intdiv-mul.tex 7816 2005-07-11 13:54:16Z lefevre – page 6



Proof of Property 1 for even precisions. We want to prove that
⋄(x1.z

−) < 1 and ⋄(x−

1 .z+) = 1 in the rounding upward mode.

We have x1.z
− = 1−2−n, which is exactly representable. As a consequence,

⋄(x1.z
−) = 1 − 2−n < 1.

x−

1 .z+ = (3 − 22−n)(1 + 2−n−1)/3 = 1 + 1

3
(3 × 2−n−1 − 8 × 2−n−1 − 21−2n),

and since n > 2, we have 21−2n < 2−n−1. It follows that x−

1 .z+ > 1−2−n = 1−,
and ⋄(x−

1 .z+) = 1. �

Proof of Property 2 for even precisions. From Property 1, we already
know that ⋄(x1.z

−) < 1 in the rounding to nearest mode. Therefore we just
need to prove that ⋄(x−

5 .z+) = 5.

We have n ≥ 4, therefore 15 is exactly representable, x−

5 = 15 − 24−n, and
x−

5 .z+ = (15 − 24−n)(1 + 2−n−1)/3 = 5 − ε, with:

ε =
1

3
(24−n − 15 × 2−n−1 + 23−2n)

≤
1

3
(17 × 2−n−1 + 2−n−1)

< 8 × 2−n−1 = 22−n.

It follows that x−

5 .z+ > 5 − 22−n = (5 + 5−)/2. Hence ⋄(x−

5 .z+) = 5. �

Proof of Property 3 for even precisions. We want to prove that in the
rounding downward mode, ⋄(x−

k .z+) < k and ⋄(xk.z
+) ≥ k for all integer

k ≤ (2n+1 − 2)/3, but ⋄(x−

k .z+) ≥ k for k = (2n+1 + 1)/3.

First let us assume that k ≤ (2n+1−2)/3. Concerning the second inequality,
since xk ≥ 3k and z+ ≥ 1/3, we have xk.z

+ ≥ k, which is exactly representable;
hence ⋄(xk.z

+) ≥ k. Concerning the first inequality, if 3k is exactly repre-
sentable, then x−

k ≤ 3k(1 − 2−n) from the lemma, otherwise 3k is an n + 1-bit
odd integer and x−

k = 3k−1 = 3k(1−1/(3k)) < 3k(1−2−n−1) since 3k < 2n+1;
so, in both cases, x−

k < 3k(1 − 2−n−1). It follows that:

x−

k .z+ < k(1 − 2−n−1)(1 + 2−n−1) = k(1 − 2−2n−2) < k.

Hence ⋄(x−

k .z+) < k.

If k = (2n+1 + 1)/3, then x−

k = 2n+1 and x−

k .z+ = (2n+1 + 1)/3 = k, which
is exactly representable. Therefore ⋄(x−

k .z+) = k. �

4.3 A Weaker Condition for the Division by 3

We already know that ⌊⋄(x/3)⌋ = ⌊x/3⌋ in the rounding downward mode [3,
Section 3.1]. But in the rounding to nearest mode, we just know that this
equality is valid under the condition that x − y is exactly representable [3,
Theorem 1], i.e., in our particular case y = 3, x ≤ 2n + 2. But we can find a

intdiv-mul.tex 7816 2005-07-11 13:54:16Z lefevre – page 7



weaker condition for this case. Let us prove that, in the rounding to nearest
mode, ⋄(x−

k /3) < k and ⋄(xk/3) ≥ k for all integer k ≤ 2n−1, but ⋄(x−

k /3) = k
for k = 2n−1 + 1.

First, xk ≥ 3k. Therefore xk/3 ≥ k, which is exactly representable. Hence
⋄(xk/3) ≥ k.

If 3k < 2n, then we know that
⌊
⋄(x−

k /3)
⌋

=
⌊
x−

k /3
⌋
, since x−

k − 3 is ex-
actly representable. Now, let us assume that 3k > 2n and k ≤ 2n−1. Then
x−

k ≤ 3k− 1, and x−

k /3 ≤ k− 1/3 < k− 1/4 = (k + k−)/2. Hence ⋄(x−

k /3) < k.

If k = 2n−1+1, then x−

k = 3×2n−1+2, and x−

k /3 = 2n−1+2/3 > 2n−1+1/2.
It follows that ⋄(x−

k /3) = k.

4.4 Conclusion Concerning ⌊x/3⌋

We have analyzed three possible implementations for ⌊x/3⌋ in the various
rounding modes: ⌊⋄(x/3)⌋, ⌊⋄(x.z−)⌋ and ⌊⋄(x.z+)⌋, where z− = ▽(1/3) and
z+ = △(1/3). Some choices were not valid even for small values of x. Table 1
summarizes the choices valid in a large interval.

Operation Rounding mode Parity of n Bound on x

⌊⋄(x/3)⌋ downward - 3 × 2n

⌊⋄(x/3)⌋ to nearest - 3 × 2n−1

⌊⋄(x.z−)⌋ to nearest odd 3 × 2n

⌊⋄(x.z+)⌋ downward odd 2n − 1
⌊⋄(x.z+)⌋ downward even 2n+1 − 2

Table 1: Various implementations of ⌊x/3⌋. Each line contains the opera-
tion, the rounding mode ⋄ under which it must be performed, the parity of the
precision n under which it applies, and the largest value X such that the imple-
mentation is valid for all x ∈ [0, X].

We can notice that, like ⌊⋄(x/y)⌋, the implementations using a multiplica-
tion are valid under some constraints on the rounding mode and the domain.
Static rounding modes better suit these kinds of operations.

Moreover, in odd precisions (which include the IEEE-754 double precision)
and the rounding to nearest mode, the implementation ⌊⋄(x.z−)⌋ is valid on
a larger interval than the interval for ⌊⋄(x/3)⌋, and it should also be faster.
In particular, this is useful in languages that work in double precision and the
rounding to nearest mode.

It would be interesting to study other cases and see if similar properties
hold for other values of y.

intdiv-mul.tex 7816 2005-07-11 13:54:16Z lefevre – page 8



References

[1] N. Brisebarre, J.-M. Muller, and S. K. Raina. Accelerating correctly rounded
floating-point division when the divisor is known in advance. IEEE Trans-
actions on Computers, 53(8):1069–1072, August 2004.
http://perso.ens-lyon.fr/jean-michel.muller/DivIEEETC-aug04.pdf

[2] D. Daney, G. Hanrot, V. Lefèvre, P. Pélissier, F. Rouillier, and P. Zimmer-
mann. The MPFR library, 2005.
http://www.mpfr.org/

[3] V. Lefèvre. The Euclidean division implemented with a floating-point divi-
sion and a floor. Research report RR-5604, INRIA, June 2005.
http://www.vinc17.org/research/papers/rr intdiv

intdiv-mul.tex 7816 2005-07-11 13:54:16Z lefevre – page 9


