
Accurate Complex Multiplication in Floating-Point

Arithmetic

Vincent Lefèvre∗, Jean-Michel Muller∗

∗ Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, F-69342, LYON Cedex 07, France

Abstract—We deal with accurate complex multiplication in
binary floating-point arithmetic, with an emphasis on the case
where one of the operands is a “double-word” number. We
provide an algorithm that returns a complex product with
normwise relative error bound close to the best possible one,
i.e., the rounding unit u.

Keywords. Floating-point arithmetic, Complex multiplica-

tion, Rounding error analysis.

I. INTRODUCTION AND NOTATION

This paper deals with accurate (from a normwise point of

view) complex multiplication in binary floating-point arith-

metic, with an emphasis on the case where the real and

imaginary parts of one of the operands are “double-word”

numbers. This is of interest, for instance, when that operand is

a root of one (which is the case in fast Fourier transforms), pre-

computed and stored in higher precision than standard floating-

point precision. This can also be of interest for computing

iterated products of several complex numbers accurately. In

the following, we assume a radix-2, precision-𝑝 floating-

point arithmetic, with correctly rounded (to nearest) arithmetic

operations. We assume that an FMA (Fused Multiply-Add)

instruction is available and, to simplify our study, we also

assume an unbounded exponent range. This means that the

results presented in this paper apply to “real-life” IEEE

754 Floating-Point arithmetic [6] as long as underflows and

overflows do not occur.

We will denote 𝑢 = 2−𝑝 the “rounding unit”. For instance

in the binary64 format of the IEEE 754 Standard (a.k.a.

“double precision”), 𝑢 = 2−53. RN is the round-to-nearest

function (with any choice in case of a tie). For instance, when

performing the operation 𝑎+𝑏, where 𝑎 and 𝑏 are floating-point

numbers, the obtained result is RN(𝑎+ 𝑏), and it satisfies:

|RN(𝑎+ 𝑏)− (𝑎+ 𝑏)| 6 𝑢

1 + 𝑢
· |𝑎+ 𝑏| < 𝑢 · |𝑎+ 𝑏|.

When implementing complex operations or functions, if the

computed result 𝑧 has the form 𝑧𝑅 + 𝑖 · 𝑧𝐼 , where 𝑧𝑅 and 𝑧𝐼

are floating-point numbers, and if the exact result is 𝑧 = 𝑧𝑅+
𝑖 ·𝑧𝐼 , one may be interested in minimizing the componentwise

relative error

max

{︂
⃒

⃒

⃒

⃒

𝑧𝑅 − 𝑧𝑅

𝑧𝑅

⃒

⃒

⃒

⃒

;

⃒

⃒

⃒

⃒

𝑧𝐼 − 𝑧𝐼

𝑧𝐼

⃒

⃒

⃒

⃒

}︂

,

or the normwise relative error
⃒

⃒

⃒

⃒

𝑧 − 𝑧

𝑧

⃒

⃒

⃒

⃒

.

An algorithm that would always return the best possible

result (i.e., a real part equal to the floating-point number

nearest to the exact real part, and an imaginary part equal

to the floating-point number nearest to the exact imaginary

part) would have worst case componentwise and normwise

relative error 𝑢/(1 + 𝑢) ≈ 𝑢: this is therefore the best error

bound achievable by an algorithm that returns the real and

imaginary parts of the result in floating point. Our goal here

is to obtain small normwise relative errors when computing

complex products, i.e., small values of |(𝑧− 𝑧)/𝑧|, where 𝑧 is

the exact product and 𝑧 is the computed product.

We will need to represent some variables by double-word

numbers. A double-word number (frequently called “double-

double” in the literature, because the underlying floating-point

format is, in general, the binary64 format) [9], [4] is a pair of

floating-point numbers 𝑣ℎ and 𝑣ℓ that represents a real number

𝑣 such that
𝑣 = 𝑣ℎ + 𝑣ℓ,
|𝑣ℓ| 6 1

2
ulp(𝑣) 6 𝑢 · |𝑣|.

To compute an approximation 𝑧𝑅 + 𝑖𝑧𝐼 to 𝑧𝑅 + 𝑖𝑧𝐼 =
(𝑥𝑅 + 𝑖𝑥𝐼) · (𝑦𝑅 + 𝑖𝑦𝐼), where 𝑥𝑅, 𝑥𝐼 , 𝑦𝑅, 𝑦𝐼 , 𝑧𝑅, and 𝑧𝐼

are floating-point numbers, one may consider the following

“naive” formulas:

∙ if no FMA instruction is available
{︂

𝑧𝑅 = RN(RN(𝑥𝑅𝑦𝑅)− RN(𝑥𝐼𝑦𝐼)),
𝑧𝐼 = RN(RN(𝑥𝑅𝑦𝐼) + RN(𝑥𝐼𝑦𝑅)).

(1)

∙ if an FMA instruction is available
{︂

𝑧𝑅 = RN(𝑥𝑅𝑦𝑅 − RN(𝑥𝐼𝑦𝐼)),
𝑧𝐼 = RN(𝑥𝑅𝑦𝐼 + RN(𝑥𝐼𝑦𝑅)).

(2)

Formulas (1) and (2), as well as the algorithm we give in this

paper (Algorithm 3), can lead to large componentwise relative

errors. To obtain small componentwise errors, one needs to

use significantly different algorithms, such as an algorithm

attributed to Kahan by Higham [5, p. 65], analyzed in [8], or

Cornea et al’s algorithm for 𝑎𝑏+ 𝑐𝑑 presented in [2].

Asymptotically optimal bounds on the normwise relative

error of formulas (1) and (2) are known: Brent et al. [1] show

a bound
√
5 ·𝑢 for (1), and Jeannerod et al. [7] show a bound

2 · 𝑢 for (2).

We aim at obtaining smaller normwise relative errors,

closer to the best possible one, at the cost of more complex

algorithms. We consider the product

𝜔 × 𝑥,

with

𝑥 = 𝑥𝑅 + 𝑖 · 𝑥𝐼 ,

where 𝑥𝑅 and 𝑥𝐼 are floating-point numbers.

In Section II we deal with the case where the real and

imaginary parts 𝜔𝑅 and 𝜔𝐼 of 𝜔 are double-word numbers

and the real and imaginary parts of the product are floating-

point numbers. The obtained algorithm (Algorithm 3) will then

be somehow simplified to consider two cases of interest: the

case where the real and imaginary parts of the product are

double-word numbers (Section III-A) and the case where 𝜔𝑅

and 𝜔𝐼 are floating-point numbers (Section III-B).

We will need two well-known algorithms of the floating-

point literature: Algorithm 2Sum (Algorithm 1 below), that

takes two floating-point numbers 𝑎 and 𝑏 as input and returns

two floating-point numbers 𝑠 and 𝑡 such that 𝑠 = RN(𝑎 + 𝑏)
and 𝑡 = 𝑎 + 𝑏 − 𝑠 (that is, 𝑡 is the error of the floating-point

addition of 𝑎 and 𝑏), and Algorithm Fast2Mult (Algorithm 2

below), that requires the availability of an FMA instruction,

and takes two floating-point numbers 𝑎 and 𝑏 as input and

returns two floating-point numbers 𝜋 and 𝜌 such that 𝜋 =
RN(𝑎𝑏) and 𝜌 = 𝑎𝑏− 𝜋 (that is, 𝜌 is the error of the floating-

point multiplication of 𝑎 and 𝑏).

ALGORITHM 1: 2Sum(𝑎, 𝑏). The 2Sum algorithm [12],

[11].

𝑠← RN(𝑎+ 𝑏)
𝑎′ ← RN(𝑠− 𝑏)
𝑏′ ← RN(𝑠− 𝑎′)
𝛿𝑎 ← RN(𝑎− 𝑎′)
𝛿𝑏 ← RN(𝑏− 𝑏′)
𝑡← RN(𝛿𝑎 + 𝛿𝑏)

ALGORITHM 2: Fast2Mult(𝑎, 𝑏). The Fast2Mult algo-

rithm (see for instance [10], [14], [13]). It requires the

availability of a fused multiply-add (FMA) instruction for

computing RN(𝑎𝑏− 𝜋).

𝜋 ← RN(𝑎𝑏)
𝜌← RN(𝑎𝑏− 𝜋)

II. THE MULTIPLICATION ALGORITHM

In this section, we assume that the real and imaginary parts

of 𝜔 are double-word numbers, i.e.,

𝜔 = 𝜔𝑅 + 𝑖 · 𝜔𝐼 = (𝜔𝑅
ℎ + 𝜔𝑅

ℓ) + 𝑖 · (𝜔𝐼
ℎ + 𝜔𝐼

ℓ),

where 𝜔𝑅
ℎ , 𝜔𝑅

ℓ , 𝜔𝐼
ℎ, and 𝜔𝐼

ℓ are floating-point numbers that

satisfy:

∙ |𝜔𝑅
ℓ | 6 (1/2)ulp(𝜔𝑅) 6 𝑢 · |𝜔𝑅|;

∙ |𝜔𝐼
ℓ | 6 (1/2)ulp(𝜔𝐼) 6 𝑢 · |𝜔𝐼 |.

For performing the complex multiplication 𝜔 · 𝑥, we intro-

duce Algorithm 3 below. The real part (lines 1 to 9) and the

imaginary part (lines 10 to 18) can obviously be computed

in parallel, and within these parts, additional parallelism is

possible. For instance lines 3 and 5 can run in parallel with line

1, and line 7 can run in parallel with line 6. This parallelism is

easily exploited by recent compilers. This explains the good

performance we obtain (see Section IV). Roughly speaking,

Algorithm 3 computes the real part 𝑧𝑅 of the result by

computing the difference 𝑣𝑅ℎ of the high-order parts of the

products 𝜔𝑅
ℎ 𝑥

𝑅 and 𝜔𝐼
ℎ𝑥

𝐼 , and adding the approximated sum

𝛾𝑅
ℓ of all the error terms that could have a significant influence

on the normwise relative error. The imaginary part 𝑧𝐼 of the

result is computed in a similar way.

ALGORITHM 3: Accurate complex multiplication 𝜔 · 𝑥,

where the real and imaginary parts of 𝜔 = (𝜔𝑅
ℎ + 𝜔𝑅

ℓ) +
𝑖 · (𝜔𝐼

ℎ + 𝜔𝐼
ℓ) are double-word numbers, and the real and

imaginary parts of 𝑥 are floating-point numbers.

1: 𝑡𝑅 ← RN(𝜔𝐼
ℓ𝑥

𝐼)
2: 𝜋𝑅

ℓ ← RN(𝜔𝑅
ℓ 𝑥

𝑅 − 𝑡𝑅)
3: (𝑃𝑅

ℎ , 𝑃𝑅
ℓ)← Fast2Mult(𝜔𝐼

ℎ, 𝑥
𝐼)

4: 𝑟𝑅ℓ ← RN(𝜋𝑅
ℓ − 𝑃𝑅

ℓ)
5: (𝑄𝑅

ℎ , 𝑄
𝑅
ℓ)← Fast2Mult(𝜔𝑅

ℎ , 𝑥
𝑅)

6: 𝑠𝑅ℓ ← RN(𝑄𝑅
ℓ + 𝑟𝑅ℓ)

7: (𝑣𝑅ℎ , 𝑣
𝑅
ℓ)← 2Sum(𝑄𝑅

ℎ ,−𝑃𝑅
ℎ)

8: 𝛾𝑅
ℓ ← RN(𝑣𝑅ℓ + 𝑠𝑅ℓ)

9: return 𝑧𝑅 = RN(𝑣𝑅ℎ + 𝛾𝑅
ℓ) (real part)

10: 𝑡𝐼 ← RN(𝜔𝐼
ℓ𝑥

𝑅)
11: 𝜋𝐼

ℓ ← RN(𝜔𝑅
ℓ 𝑥

𝐼 + 𝑡𝐼)
12: (𝑃 𝐼

ℎ , 𝑃
𝐼
ℓ)← Fast2Mult(𝜔𝐼

ℎ, 𝑥
𝑅)

13: 𝑟𝐼ℓ ← RN(𝜋𝐼
ℓ + 𝑃 𝐼

ℓ)
14: (𝑄𝐼

ℎ, 𝑄
𝐼
ℓ)← Fast2Mult(𝜔𝑅

ℎ , 𝑥
𝐼)

15: 𝑠𝐼ℓ ← RN(𝑄𝐼
ℓ + 𝑟𝐼ℓ)

16: (𝑣𝐼ℎ, 𝑣
𝐼
ℓ)← 2Sum(𝑄𝐼

ℎ, 𝑃
𝐼
ℎ)

17: 𝛾𝐼
ℓ ← RN(𝑣𝐼ℓ + 𝑠𝐼ℓ)

18: return 𝑧𝐼 = RN(𝑣𝐼ℎ + 𝛾𝐼
ℓ) (imaginary part)

Our main result is

Theorem 1. As soon as 𝑝 > 4, the normwise relative error 𝜂
of Algorithm 3 satisfies

𝜂 < 𝑢+ 33𝑢2.

The condition “𝑝 > 4” of Theorem 1 always holds in

practice. Note that Algorithm 3 can easily be transformed into

an algorithm that returns the real and imaginary parts of the

product as double-word numbers, in order to reduce the error:

it suffices to replace the floating-point additions of lines 9 and

18 by a call to 2Sum (or to the somehow simpler Fast2Sum

algorithm, see for instance [13]). We deal with this solution

in Section III-A.

Theorem 1 uses the following lemma, that we will prove

first.

Lemma 1 (Componentwise absolute error of Algorithm 3).

We have

|𝑧𝑅 −ℜ(𝑤𝑥)| 6 𝛼𝑛𝑅 + 𝛽𝑁𝑅,
|𝑧𝐼 −ℑ(𝑤𝑥)| 6 𝛼𝑛𝐼 + 𝛽𝑁 𝐼 ,

(3)

with

𝑁𝑅 = |𝜔𝑅𝑥𝑅|+ |𝜔𝐼𝑥𝐼 |,
𝑛𝑅 = |𝜔𝑅𝑥𝑅 − 𝜔𝐼𝑥𝐼 |,
𝑁 𝐼 = |𝜔𝑅𝑥𝐼 |+ |𝜔𝐼𝑥𝑅|,
𝑛𝐼 = |𝜔𝑅𝑥𝐼 + 𝜔𝐼𝑥𝑅|,
𝛼 = 𝑢+ 3𝑢2 + 𝑢3,
𝛽 = 15𝑢2 + 38𝑢3 + 39𝑢4 + 22𝑢5 + 7𝑢6 + 𝑢7.

Proof. We will focus on the calculation of the real part of the

complex product (i.e., lines 1 to 9 of the algorithm), since the

results for the real part hold for the imaginary part through

a simple symmetry argument (namely, the imaginary part of

(𝑎+ 𝑖𝑏) · (𝑐+ 𝑖𝑑) is equal to the real part of (𝑏− 𝑖𝑎) · (𝑐+ 𝑖𝑑)).

A. Lines 1-2 of Algorithm 3: computation of an approximation

𝜋𝑅
ℓ to (𝜔𝑅

ℓ 𝑥
𝑅 − 𝜔𝐼

ℓ𝑥
𝐼).

We have

|𝑡𝑅 − (𝜔𝐼
ℓ𝑥

𝐼)| 6 𝑢2 · |𝜔𝐼𝑥𝐼 |, (4)

and |𝑡𝑅| 6 (𝑢+ 𝑢2) · |𝜔𝐼𝑥𝐼 |, so that

|𝜔𝑅
ℓ 𝑥

𝑅 − 𝑡𝑅| 6 𝑢 · |𝜔𝑅𝑥𝑅|+ (𝑢+ 𝑢2) · |𝜔𝐼𝑥𝐼 |
6 (𝑢+ 𝑢2) · (|𝜔𝑅𝑥𝑅|+ |𝜔𝐼𝑥𝐼 |)
= (𝑢+ 𝑢2) ·𝑁𝑅,

a consequence of which is

|𝜋𝑅
ℓ − (𝜔𝑅

ℓ 𝑥
𝑅 − 𝑡𝑅)| 6 (𝑢2 + 𝑢3) ·𝑁𝑅, (5)

and

|𝜋𝑅
ℓ | 6 (𝑢+ 2𝑢2 + 𝑢3) ·𝑁𝑅.

From (4) and (5), we obtain
⃒

⃒𝜋𝑅
ℓ − (𝜔𝑅

ℓ 𝑥
𝑅 − 𝜔𝐼

ℓ𝑥
𝐼)
⃒

⃒ 6 𝜖1, (6)

with

𝜖1 = (2𝑢2 + 𝑢3) ·𝑁𝑅.

B. Line 3.

We have

𝑃𝑅
ℎ + 𝑃𝑅

ℓ = 𝜔𝐼
ℎ𝑥

𝐼 , (7)

with

|𝑃𝑅
ℓ | 6 𝑢 · |𝜔𝐼

ℎ𝑥
𝐼 | 6 𝑢(1 + 𝑢) · |𝜔𝐼𝑥𝐼 |,

and

|𝑃𝑅
ℎ | 6 (1 + 𝑢)2 · |𝜔𝐼𝑥𝐼 |.

C. Line 4.

From

|𝜋𝑅
ℓ − 𝑃𝑅

ℓ | 6 (𝑢+ 𝑢2) · |𝜔𝐼𝑥𝐼 |+ (𝑢+ 2𝑢2 + 𝑢3) ·𝑁𝑅

6 (2𝑢+ 3𝑢2 + 𝑢3) ·𝑁𝑅,

we obtain

|𝑟𝑅ℓ − (𝜋𝑅
ℓ − 𝑃𝑅

ℓ)| 6 𝜖2, (8)

with

𝜖2 = (2𝑢2 + 3𝑢3 + 𝑢4) ·𝑁𝑅,

and

|𝑟𝑅ℓ | 6 (2𝑢+ 5𝑢2 + 4𝑢3 + 𝑢4) ·𝑁𝑅, (9)

and, using (6) and (8),
⃒

⃒𝑟𝑅ℓ − (𝜔𝑅
ℓ 𝑥

𝑅 − 𝜔𝐼
ℓ𝑥

𝐼 − 𝑃𝑅
ℓ)

⃒

⃒

6 (4𝑢2 + 4𝑢3 + 𝑢4) ·𝑁𝑅.
(10)

D. Lines 5 and 6.

We have

𝑄𝑅
ℎ +𝑄𝑅

ℓ = 𝜔𝑅
ℎ 𝑥

𝑅, (11)

and

|𝑄𝑅
ℓ | 6 𝑢(1 + 𝑢) · |𝜔𝑅𝑥𝑅|.

From this bound on |𝑄𝑅
ℓ | and (9), we obtain

⃒

⃒𝑄𝑅
ℓ + 𝑟𝑅ℓ

⃒

⃒ 6 (3𝑢+ 6𝑢2 + 4𝑢3 + 𝑢4) ·𝑁𝑅,

from which we deduce
⃒

⃒𝑠𝑅ℓ − (𝑄𝑅
ℓ + 𝑟𝑅ℓ)

⃒

⃒ 6 𝜖3, (12)

with

𝜖3 = (3𝑢2 + 6𝑢3 + 4𝑢4 + 𝑢5) ·𝑁𝑅,

and
⃒

⃒𝑠𝑅ℓ
⃒

⃒ 6 (3𝑢+ 9𝑢2 + 10𝑢3 + 5𝑢4 + 𝑢5) ·𝑁𝑅. (13)

All this gives

(𝑄𝑅
ℎ − 𝑃𝑅

ℎ + 𝑠𝑅ℓ) = (𝑄𝑅
ℎ − 𝑃𝑅

ℎ +𝑄𝑅
ℓ + 𝑟𝑅ℓ)

+𝜉3
= (𝑄𝑅

ℎ +𝑄𝑅
ℓ − 𝑃𝑅

ℎ + (𝜋𝑅
ℓ − 𝑃𝑅

ℓ))
+𝜉3 + 𝜉2

= (𝜔𝑅
ℎ 𝑥

𝑅 − 𝜔𝐼
ℎ𝑥

𝐼 + 𝜔𝑅
ℓ 𝑥

𝑅 − 𝜔𝐼
ℓ𝑥

𝐼)
+𝜉3 + 𝜉2 + 𝜉1,

with

|𝜉3| 6 𝜖3 = (3𝑢2 + 6𝑢3 + 4𝑢4 + 𝑢5) ·𝑁𝑅,

(from (12)), and

|𝜉2| 6 𝜖2 = (2𝑢2 + 3𝑢3 + 𝑢4) ·𝑁𝑅,

(from (8)), and

|𝜉1| 6 𝜖1 = (2𝑢2 + 𝑢3) ·𝑁𝑅,

(from (6), (7), and (11)). This implies
⃒

⃒(𝑄𝑅
ℎ − 𝑃𝑅

ℎ + 𝑠𝑅ℓ)− (𝜔𝑅𝑥𝑅 − 𝜔𝐼𝑥𝐼)
⃒

⃒

6 (7𝑢2 + 10𝑢3 + 5𝑢4 + 𝑢5) ·𝑁𝑅.
(14)

E. Lines 7 to 9.

We have

|𝑄𝑅
ℎ − 𝑃𝑅

ℎ | = |𝜔𝑅
ℎ 𝑥

𝑅 − 𝜔𝐼
ℎ𝑥

𝐼 −𝑄𝑅
ℓ + 𝑃𝑅

ℓ |
6 𝑛𝑅 + (2𝑢+ 𝑢2) ·𝑁𝑅,

hence,

|𝑣𝑅ℓ | 6 𝑢 · 𝑛𝑅 + (2𝑢2 + 𝑢3) ·𝑁𝑅,

and

|𝑣𝑅ℎ | 6 (1 + 𝑢) · 𝑛𝑅 + (2𝑢+ 3𝑢2 + 𝑢3) ·𝑁𝑅.

Therefore, using (13),

|𝑣𝑅ℓ + 𝑠𝑅ℓ | 6 𝑢 · 𝑛𝑅 + (3𝑢+ 11𝑢2 + 11𝑢3 + 5𝑢4 + 𝑢5) ·𝑁𝑅,

so that
⃒

⃒𝛾𝑅
ℓ − (𝑣𝑅ℓ + 𝑠𝑅ℓ)

⃒

⃒

6 𝑢2 · 𝑛𝑅

+(3𝑢2 + 11𝑢3 + 11𝑢4 + 5𝑢5 + 𝑢6) ·𝑁𝑅,
(15)

and
⃒

⃒𝛾𝑅
ℓ

⃒

⃒ 6 (𝑢+ 𝑢2) · 𝑛𝑅

+(3𝑢+ 14𝑢2 + 22𝑢3 + 16𝑢4 + 6𝑢5 + 𝑢6) ·𝑁𝑅.

This gives
⃒

⃒𝑣𝑅ℎ + 𝛾𝑅
ℓ

⃒

⃒

6 (1 + 2𝑢+ 𝑢2) · 𝑛𝑅

+(5𝑢+ 17𝑢2 + 23𝑢3 + 16𝑢4 + 6𝑢5 + 𝑢6) ·𝑁𝑅,

so that the error of the final addition 𝑣𝑅ℎ + 𝛾𝑅
ℓ is bounded by

(𝑢+ 2𝑢2 + 𝑢3) · 𝑛𝑅

+(5𝑢2 + 17𝑢3 + 23𝑢4 + 16𝑢5 + 6𝑢6 + 𝑢7) ·𝑁𝑅.
(16)

The bound on the total error (i.e., |𝑧𝑅−ℜ(𝑤𝑥)|) is obtained

by adding the bounds (14), (15), and (16), i.e.,

(𝑢+ 3𝑢2 + 𝑢3) · 𝑛𝑅

+(15𝑢2 + 38𝑢3 + 39𝑢4 + 22𝑢5 + 7𝑢6 + 𝑢7) ·𝑁𝑅.
(17)

This gives Lemma 1.

Let us now prove Theorem 1.

Proof. Lemma 1 gives a bound on the componentwise abso-

lute error of Algorithm 3. However, it does not allow one to

infer a useful bound on the componentwise relative error, since

|𝑁𝑅/𝑛𝑅| and |𝑁 𝐼/𝑛𝐼 | can be arbitrarily large. However, the

normwise relative error is always small, as we are going to

see.

The square of the normwise relative error 𝜂 is

𝜂2 =
(𝑧𝑅 −ℜ(𝜔𝑥))2 + (𝑧𝐼 −ℑ(𝜔𝑥))2

(ℜ(𝜔𝑥))2 + (ℑ(𝜔𝑥))2
.

From (3), we have

(𝑧𝑅 −ℜ(𝜔𝑥))2 + (𝑧𝐼 −ℑ(𝜔𝑥))2
6 𝛼2

(︁

(︀

𝑛𝑅
)︀2

+
(︀

𝑛𝐼
)︀2
)︁

+ 2𝛼𝛽
(︀

𝑛𝑅𝑁𝑅 + 𝑛𝐼𝑁 𝐼
)︀

+𝛽2

(︁

(︀

𝑁𝑅
)︀2

+
(︀

𝑁 𝐼
)︀2
)︁

.

We also have

(ℜ(𝜔𝑥))2 + (ℑ(𝜔𝑥))2 =
(︀

𝑛𝑅
)︀2

+
(︀

𝑛𝐼
)︀2

=
(︀

𝜔𝑅𝑥𝑅
)︀2

+
(︀

𝜔𝐼𝑥𝐼
)︀2

+
(︀

𝜔𝑅𝑥𝐼
)︀2

+
(︀

𝜔𝐼𝑥𝑅
)︀2

.

Hence,

𝜂2 6 𝛼2 + 2𝛼𝛽
𝑛𝑅𝑁𝑅 + 𝑛𝐼𝑁 𝐼

(𝑛𝑅)
2
+ (𝑛𝐼)

2

+𝛽2

(︀

𝑁𝑅
)︀2

+
(︀

𝑁 𝐼
)︀2

(𝑛𝑅)
2
+ (𝑛𝐼)

2
.

(18)

We can notice that

𝑛𝑅𝑁𝑅 + 𝑛𝐼𝑁 𝐼

(𝑛𝑅)
2
+ (𝑛𝐼)

2
6

(︀

𝑁𝑅
)︀2

+
(︀

𝑁 𝐼
)︀2

(𝑛𝑅)
2
+ (𝑛𝐼)

2
,

and

(︀

𝑁𝑅
)︀2

+
(︀

𝑁 𝐼
)︀2

(𝑛𝑅)
2
+ (𝑛𝐼)

2

= 1 +
4 ·

⃒

⃒𝜔𝑅𝑥𝑅𝜔𝐼𝑥𝐼
⃒

⃒

(𝜔𝑅𝑥𝑅)
2
+ (𝜔𝐼𝑥𝐼)

2
+ (𝜔𝑅𝑥𝐼)

2
+ (𝜔𝐼𝑥𝑅)

2
.

(19)

In the denominator of the right-hand part of (19), the sum

of the two terms
(︀

𝜔𝑅𝑥𝑅
)︀2

and
(︀

𝜔𝐼𝑥𝐼
)︀2

is larger than or equal

to 2 ·
⃒

⃒𝜔𝑅𝑥𝑅𝜔𝐼𝑥𝐼
⃒

⃒, since

(︀

𝜔𝑅𝑥𝑅
)︀2

+
(︀

𝜔𝐼𝑥𝐼
)︀2 − 2 ·

⃒

⃒𝜔𝑅𝑥𝑅𝜔𝐼𝑥𝐼
⃒

⃒

= (|𝜔𝑅𝑥𝑅| − |𝜔𝐼𝑥𝐼 |)2 > 0.

The same holds for the sum of the two terms
(︀

𝜔𝑅𝑥𝐼
)︀2

and
(︀

𝜔𝐼𝑥𝑅
)︀2

. This immediately gives

1 +
4 ·

⃒

⃒𝜔𝑅𝑥𝑅𝜔𝐼𝑥𝐼
⃒

⃒

(𝜔𝑅𝑥𝑅)
2
+ (𝜔𝐼𝑥𝐼)

2
+ (𝜔𝑅𝑥𝐼)

2
+ (𝜔𝐼𝑥𝑅)

2
6 2.

Combined with (18), this gives

𝜂2 6 𝛼2 + 4𝛼𝛽 + 2𝛽2,

from which we obtain

𝜂2 6 𝑢2 + 66𝑢3 + 793𝑢4 + 2958𝑢5 + 5937𝑢6

+ 7696𝑢7 + 6982𝑢8 + 4596𝑢9 + 2216𝑢10

+ 772𝑢11 + 186𝑢12 + 28𝑢13 + 2𝑢14.
(20)

This bound can be rewritten

𝜂2 6
(︀

𝑢+ 33𝑢2
)︀2 − (296− 𝜈) · 𝑢4

with

𝜈 = 2958𝑢+ 5937𝑢2 + 7696𝑢3 + 6982𝑢4 + 4596𝑢5

+ 2216𝑢6 + 772𝑢7 + 186𝑢8 + 28𝑢9 + 2𝑢10.

One easily checks that for 𝑢 6 1/16 (i.e., 𝑝 > 4), 𝜈 < 296
(since it is an increasing function of 𝑢, it suffices to check its

value for 𝑢 = 1/16). Theorem 1 immediately follows from

that.

III. TWO SPECIAL CASES

A. Obtaining the real and imaginary parts of the product as

double-word numbers

As explained above, one may wish to obtain the real and

imaginary parts of the product 𝜔 · 𝑥 as double-word numbers,

by replacing the floating-point addition 𝑧𝑅 = RN(𝑣𝑅ℎ + 𝛾𝑅
ℓ)

of line 9 of Algorithm 3 by a call to 2Sum(𝑣𝑅ℎ , 𝛾
𝑅
ℓ), and by

replacing the floating-point addition 𝑧𝐼 = RN(𝑣𝐼ℎ+𝛾𝐼
ℓ) of line

18 by a call to 2Sum(𝑣𝐼ℎ, 𝛾
𝐼
ℓ). The resulting componentwise

error bound is obtained by adding (14) and (15), so that the

values 𝛼 and 𝛽 of Lemma 1 must be replaced by

𝛼′ = 𝑢2

and

𝛽′ = 10𝑢2 + 21𝑢3 + 16𝑢4 + 6𝑢5 + 𝑢6.

With these new values, the square 𝜂′2 of the normwise error

now satisfies

𝜂′2 6 241𝑢4 + 924𝑢5 + 1586𝑢6

+ 1608𝑢7 + 1060𝑢8 + 468𝑢9

+ 136𝑢10 + 24𝑢11 + 2𝑢12,
(21)

so that the normwise relative error becomes less than
√
241 ·

𝑢2 +𝒪(𝑢3) ≈ 15.53𝑢2 +𝒪(𝑢3).
That variant is of interest if one wishes to accurately

evaluate the product

𝑧1 × 𝑧2 × · · · × 𝑧𝑛

of 𝑛 complex numbers. One can evaluate that product iter-

atively, keeping the real and imaginary parts of the partial

product of all already considered terms as double-word num-

bers, and just using the unmodified Algorithm 3 (i.e., a simple

FP addition and not a 2Sum at lines 9 and 18) for the last

multiplication. Still assuming that overflow or underflow do

not occur (which may become unlikely if 𝑛 is very large and

the 𝑧𝑖 are arbitrary numbers), the total relative error is bounded

by

(1 + 𝜂′)𝑛−2 · (1 + 𝜂)− 1.

For instance, assuming binary64 arithmetic (𝑢 = 2−53), one

can multiply 1000 numbers and still have a normwise relative

error bounded by 1.000000000001724𝑢.

B. If 𝜔𝐼 and 𝜔𝑅 are floating-point numbers

If 𝜔𝐼 and 𝜔𝑅 are floating-point numbers (i.e., if 𝜔𝐼
ℓ = 𝜔𝑅

ℓ =
0), Algorithm 3 becomes simpler, and we obtain Algorithm 4

below. Each separate part (computation of the real part, lines

1 to 6, or computation of the imaginary part, lines 7 to 12) in

Algorithm 4 is similar to Cornea et al’s algorithm for 𝑎𝑏+ 𝑐𝑑
presented in [2] (with an addition replaced here by a call to

2Sum), and to Algorithm 5.3 in [15] (with an inversion in the

order of summation of 𝑃𝑅
ℓ , 𝑄𝑅

ℓ , and 𝑣𝑅ℓ for the real part, and

of 𝑃 𝐼
ℓ , 𝑄𝐼

ℓ , and 𝑣𝐼ℓ for the imaginary part).

ALGORITHM 4: Accurate complex multiplication 𝜔 ·
𝑥, where the real and imaginary parts of 𝜔 and the real

and imaginary parts of 𝑥 are FP numbers, derived from

Algorithm 3.

1: (𝑃𝑅
ℎ , 𝑃𝑅

ℓ)← Fast2Mult(𝜔𝐼 , 𝑥𝐼)
2: (𝑄𝑅

ℎ , 𝑄
𝑅
ℓ)← Fast2Mult(𝜔𝑅, 𝑥𝑅)

3: 𝑠𝑅ℓ ← RN(𝑄𝑅
ℓ − 𝑃𝑅

ℓ)
4: (𝑣𝑅ℎ , 𝑣

𝑅
ℓ)← 2Sum(𝑄𝑅

ℎ ,−𝑃𝑅
ℎ)

5: 𝛾𝑅
ℓ ← RN(𝑣𝑅ℓ + 𝑠𝑅ℓ)

6: return 𝑧𝑅 = RN(𝑣𝑅ℎ + 𝛾𝑅
ℓ) (real part)

7: (𝑃 𝐼
ℎ , 𝑃

𝐼
ℓ)← Fast2Mult(𝜔𝐼 , 𝑥𝑅)

8: (𝑄𝐼
ℎ, 𝑄

𝐼
ℓ)← Fast2Mult(𝜔𝑅, 𝑥𝐼)

9: 𝑠𝐼ℓ ← RN(𝑄𝐼
ℓ + 𝑃 𝐼

ℓ)
10: (𝑣𝐼ℎ, 𝑣

𝐼
ℓ)← 2Sum(𝑄𝐼

ℎ, 𝑃
𝐼
ℎ)

11: 𝛾𝐼
ℓ ← RN(𝑣𝐼ℓ + 𝑠𝐼ℓ)

12: return 𝑧𝐼 = RN(𝑣𝐼ℎ + 𝛾𝐼
ℓ) (imaginary part)

Of course the error bounds given by (20) and Theorem 1

still apply. However, one can redo the calculations taking into

account the zero terms, and obtain new error bounds with

smaller higher-order terms, more precisely, we find

𝜂2 6 𝑢2 + 38𝑢3 + 299𝑢4 + 782𝑢5 + 1025𝑢6

+ 768𝑢7 + 336𝑢8 + 80𝑢9 + 8𝑢10.
(22)

Therefore

𝜂2 6
(︀

𝑢+ 19𝑢2
)︀2 − (62− 𝜈) · 𝑢4

with

𝜈 = 782𝑢+ 1025𝑢2 + 768𝑢3 + 336𝑢4 + 80𝑢5 + 8𝑢6.

This gives

Theorem 2. As soon as 𝑝 > 4, the normwise relative error 𝜂
of Algorithm 4 satisfies

𝜂 < 𝑢+ 19𝑢2.

IV. IMPLEMENTATION AND EXPERIMENTS

Algorithm 3, implemented in binary64 arithmetic (i.e.,

𝑝 = 53 and 𝑢 = 2−53), was compared with other solutions,

using a loop over 𝑁 random inputs, itself inside another loop

doing 𝐾 iterations. The goal of the external loop is to get

precise timings without having to choose a large value of 𝑁 ,

with input data that would not fit in the cache: we do not

want to include memory transfers in the timings. For each

test, we chose (𝑁,𝐾) = (1024, 65536), (2048, 32768) and

(4096, 16384).
The other considered solutions were: use of the naive

formula (1) in binary64 arithmetic; use of (1) in binary128

(a.k.a. “quad precision”) arithmetic; use of GNU MPFR [3]

with precision ranging from 53 to 106 bits either with fused

multiplications/subtractions fmma/fmms (thus implementing

the formulas, correctly rounded) or with separate additions,

subtractions and multiplications.

The tests were run on two machines with a hardware FMA:

∙ an x86_64 machine with Intel Xeon E5-2609 v3 CPUs,

under Linux (Debian/unstable), with GCC 8.2.0 and a

Clang 8 preversion, using -march=native;

∙ a ppc64le machine with POWER9 CPUs, under Linux

(CentOS 7), with GCC 8.2.1, using -mcpu=power9.

The following optimization options were used: -O3 and -O2.

With GCC, -O3 -fno-tree-slp-vectorize was also

used in order to avoid a loss of performance with some

vectorized codes. In all the cases, -static was used to avoid

the overhead due to function calls to dynamic libraries.

The tests were run on several random data sets, giving a

range of timings and a range of ratios. The smallest 10 %

values and largest 10 % values have been excluded to take

into account inaccuracies in the timings.

We checked that the various timings were globally consis-

tent, in particular between the three chosen parameters for

(𝑁,𝐾), and rejected some anomalies manually: for Algo-

rithm 3, (𝑁,𝐾) = (2048, 32768) and (4096, 16384) with

TABLE I
SUMMARY OF THE TIMINGS ON AN X86_64 MACHINE (IN SECONDS, FOR

NK = 2
26 OPERATIONS). “A3” STANDS FOR “ALGORITHM 3” (IN

BINARY64 ARITHMETIC), “SW” CORRESPONDS TO THE NAIVE FORMULA

(1) IN BINARY64 ARITHMETIC, “DW” CORRESPONDS TO (1) IN

BINARY128 ARITHMETIC, “CR” IS GNU MPFR WITH FUSED

MULTIPLICATIONS/SUBTRACTIONS FMMA/FMMS, AND “NA” IS GNU
MPFR WITH SEPARATE ADDITIONS, SUBTRACTIONS AND

MULTIPLICATIONS.

minimums maximums

N → 1024 2048 4096 1024 2048 4096

gcc

-O3

a3 0.94 0.97 0.97 0.96 1.02 1.02

sw 0.61 0.62 0.62 0.61 0.62 0.62

dw 21.02 21.17 21.20 21.18 21.25 21.28

cr 15.76 15.99 16.08 21.48 21.63 21.66

na 12.46 12.88 12.99 23.16 23.23 23.22

gcc

-O3

-f...

a3 0.92 0.97 0.97 0.95 1.02 1.02

sw 0.61 0.61 0.62 0.61 0.62 0.62

dw 21.32 21.44 21.46 21.43 21.53 21.54

cr 15.87 16.11 16.16 21.54 21.73 21.78

na 12.59 13.01 13.12 22.72 22.85 22.80

gcc

-O2

a3 0.91 0.97 0.97 0.95 1.02 1.02

sw 0.61 0.62 0.62 0.61 0.62 0.62

dw 20.90 21.03 21.08 21.01 21.10 21.13

cr 15.93 16.17 16.26 21.57 21.70 21.75

na 12.31 12.74 12.85 23.11 23.20 23.18

clang

-O3

a3 0.86 1.09 1.10 0.96 1.15 1.15

sw 0.39 0.61 0.63 0.47 0.65 0.66

dw 21.65 21.77 21.81 21.74 21.87 21.88

cr 16.00 16.24 16.32 21.46 21.69 21.71

na 12.24 12.63 12.72 22.91 22.94 22.97

clang

-O2

a3 0.88 1.08 1.10 0.96 1.14 1.15

sw 0.40 0.61 0.63 0.48 0.65 0.66

dw 21.33 21.45 21.50 21.49 21.57 21.59

cr 15.38 15.62 15.70 21.62 21.79 21.87

na 12.15 12.54 12.65 23.15 23.21 23.21

TABLE II
SUMMARY OF THE TIMINGS ON A POWER9 MACHINE (IN SECONDS, FOR

NK = 2
26 OPERATIONS). “A3” , “SW”, “DW”, “CR”, AND “NA” HAVE THE

SAME MEANING AS IN TABLE I.

minimums maximums

N → 1024 2048 4096 1024 2048 4096

gcc

-O3

a3 0.97 0.97 0.97 0.99 0.99 1.00

sw 0.47 0.47 0.51 0.48 0.48 0.52

dw 2.22 2.22 2.22 2.24 2.24 2.24

cr 19.44 19.56 19.62 23.94 24.07 24.06

na 16.41 16.60 16.66 30.07 30.34 30.63

gcc

-O3

-f...

a3 0.97 0.97 0.97 0.98 0.99 1.00

sw 0.47 0.47 0.51 0.48 0.48 0.52

dw 2.22 2.22 2.22 2.24 2.24 2.24

cr 19.45 19.59 19.61 24.11 24.08 24.07

na 16.42 16.59 16.66 30.06 30.39 30.44

gcc

-O2

a3 0.98 0.98 0.98 0.99 1.01 1.01

sw 0.47 0.47 0.51 0.47 0.47 0.51

dw 2.22 2.22 2.22 2.24 2.24 2.24

cr 19.50 19.66 19.68 24.14 24.11 24.05

na 16.36 16.58 16.63 30.29 30.29 30.49

Clang gave running times larger than those obtained with

GCC, affecting the comparison with GNU MPFR. The timings

are given in Table I (x86_64) and Table II (Power9). Note that

reading the inputs is included in the timings (thus the ratios

will be closer to 1 than one could expect), but these inputs are

already in the right format for each implementation.

As a summary from the tables:

∙ Implementation based on the naive formula (1) in

binary64 (inlined code): It is about two times as fast as

our implementation of Algorithm 3, but it is significantly

less accurate.

∙ Implementation based on the naive formula in bi-

nary128, using the __float128 C type (inlined code):

On the x86_64 platform, it is from 19 to 25 times as slow

as our implementation of Algorithm 3, the reason being

that this format is implemented in software. The case of

the POWER9 platform is particularly interesting as it has

binary128 support in hardware. Here, the implementation

is about 2.3 times as slow. This shows that even though

one has hardware support for binary128, there is still

interest in algorithms using a mix of binary64 and double-

binary64.

∙ Implementation based on GNU MPFR, using pre-

cisions from 53 (corresponding to binary64) to 106

(roughly corresponding to double-binary64). Both codes

based on fmma/fmms (thus implementing the formulas,

correctly rounded) and based on separate additions, sub-

traction and multiplication operations were tested. This

is from 11 to 26 times as slow as our implementation of

Algorithm 3 on x86_64, and from 17 to 31 times as slow

on POWER9.

Algorithm 3 has also been tested on random inputs to search

for large normwise relative errors. For binary32, the input

values (in ISO C99 / IEEE 754-2008 hexadecimal format)

and the corresponding largest error found until now are

𝜔𝑅 = 0x1.b3fdfcp−1 + 0x1.77f658p−26
𝜔𝐼 = 0x1.53c918p−28 +−0x1.ca53e6p−53
𝑥𝑅 = 0x1.2ca11ep−1
𝑥𝐼 = 0x1.9c641ap−18
𝜂 ≃ 0.99999933401292962563𝑢

and for binary64, we have obtained

ω
R

= 0x1.d1ef9ea4aa013p−1 + 0x1.ae88ba2a277ep−56

ω
I

= 0x1.f5c28321df365p−81 + 0x1.c4c3e7b506d06p−135

x
R

= 0x1.194f298b4d152p−1

x
I

= 0x1.5c1fdca444f7cp−14

η ≃ 0.99999900913907117123u.

This corroborates the bound given by Theorem 1.

CONCLUSION

We have given algorithms for complex multiplication in

floating-point arithmetic, that either return the real and imag-

inary parts of the product as floating-point numbers with a

normwise relative error bound close to the best one that one

can guarantee, namely 𝑢/(1+𝑢), or as double-word numbers.

Our implementation is only twice as slow as a significantly

less accurate naive implementation. It is much faster than

an implementation based on binary128 or multiple-precision

software.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their very

helpful comments. This work has been partly supported by

the FastRelax project of the French Agence Nationale de la

Recherche (ANR-14-CE25-0018-01).

REFERENCES

[1] R. P. Brent, C. Percival, and P. Zimmermann. Error bounds on complex
floating-point multiplication. Mathematics of Computation, 76:1469–
1481, 2007.

[2] M. Cornea, J. Harrison, and P. T. P. Tang. Scientific Computing on

Itanium R○-based Systems. Intel Press, Hillsboro, OR, 2002.
[3] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann.

MPFR: A multiple-precision binary floating-point library with correct
rounding. ACM Transactions on Mathematical Software, 33(2), 2007.
15 pages. Available at https://www.mpfr.org/.

[4] Y. Hida, X. S. Li, and D. H. Bailey. Algorithms for quad-double pre-
cision floating-point arithmetic. In 15th IEEE Symposium on Computer

Arithmetic (ARITH-15), pages 155–162, June 2001.
[5] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,

Philadelphia, PA, 2nd edition, 2002.
[6] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic.

IEEE Standard 754-2008, August 2008. Available at https://doi.org/10.
1109/IEEESTD.2008.4610935.

[7] C.-P. Jeannerod, P. Kornerup, N. Louvet, and J.-M. Muller. Error bounds
on complex floating-point multiplication with an FMA. Mathematics of

Computation, 86(304):881–898, 2017.
[8] C.-P. Jeannerod, N. Louvet, and J.-M. Muller. Further analysis of

Kahan’s algorithm for the accurate computation of 2× 2 determinants.
Mathematics of Computation, 82(284):2245–2264, 2013.

[9] M. Joldeş, J.-M. Muller, and V. Popescu. Tight and rigourous error
bounds for basic building blocks of double-word arithmetic. ACM

Transactions on Mathematical Software, 44(2), 2017.
[10] W. Kahan. Lecture notes on the status of IEEE-754. Available at https:

//people.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF, 1997.
[11] D. E. Knuth. The Art of Computer Programming, volume 2. Addison-

Wesley, Reading, MA, 3rd edition, 1998.
[12] O. Møller. Quasi double-precision in floating-point addition. BIT, 5:37–

50, 1965.
[13] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes,

V. Lefèvre, G. Melquiond, N. Revol, and S. Torres. Handbook of

Floating-Point Arithmetic. Birkhäuser Boston, 2018. ACM G.1.0; G.1.2;
G.4; B.2.0; B.2.4; F.2.1., ISBN 978-3-319-76525-9.

[14] Y. Nievergelt. Scalar fused multiply-add instructions produce floating-
point matrix arithmetic provably accurate to the penultimate digit. ACM

Transactions on Mathematical Software, 29(1):27–48, 2003.
[15] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot product.

SIAM Journal on Scientific Computing, 26(6):1955–1988, 2005.

