Hardest-to-Round Cases – Part 2

Vincent LEFÈVRE

AriC, INRIA Grenoble – Rhône-Alpes / LIP, ENS-Lyon

Journées TaMaDi, Lyon, 2013-10-08
Outline

- Hardest-to-Round Cases in binary64 (Double Precision)
- Functions x^n
- Average Computation Time
Let’s recall...

- Floating-point system in radix 2.
- Double precision \((p = 53)\).
- **No subnormals.**
 In input, the exponent range will be extended to include subnormals.

- Exact cases are regarded as hard-to-round cases (stored in the database). Exactness is checked by `readres` with GNU MPFR and these cases are not output.

- Algorithm used: L-algorithm (first step).
After 13812778 CPU core hours (≈ 1576 years) for the first step, in summary:

- e^x, 2^x, 10^x, sinh, cosh, sin($2\pi x$), cos($2\pi x$), tan($2\pi x$);
- x^n for $3 \leq n \leq 5188$ and $-180 \leq n \leq -2$;
- sin, cos, tan between $-\pi/2$ and $\pi/2$;
- the corresponding inverse functions.
Hardest-to-Round Cases in binary64 (Double Precision) [3]

The following results are presented in a different way from 2010, separating rounding to nearest and directed rounding.

Only the **hardest-to-round case** in the considered domain is given.

Filtering done manually. Let’s hope there are no errors…

Format of the results: function(hexForm) = hexForm:rf[k]xxxx

where:

- hexForm denotes a binary64 number in the ISO C99 / IEEE 754-2008 hexadecimal format (here, we chose ±1.hhhhhhhhhhhhhPe, where h is a hexadecimal digit and e is the binary exponent written in decimal);
- r is the rounding bit;
- f is the following bit;
- k is the number of times this bit is repeated;
- xxxx are the next 4 bits of the exact result.
Functions \textit{exp} and \textit{log}

Function \textit{exp}:

- Rounding to nearest, whole domain:
 \[
 \exp(-1.12D31A20FB38BP+5) = 1.5B0BF3244820AP-50:01[58]0010
 \]

- Directed rounding, in \((-\infty, -2^{-37}] \cup [2^{-36}, +\infty)\):
 \[
 \exp(-1.ED318EFB627EAP-27) = 1.FFFFFF84B39C4P-1:11[59]0001
 \]

- Directed rounding, in \([-2^{-37}, 2^{-36}]\):
 \[
 \exp(1.FFFFFFFFFFFFFFFP-53) = 1.0000000000000P0:11[104]0101
 \]

Function \textit{log}:

- Rounding to nearest, whole domain:
 \[
 \log(1.FD15DAA6CE332P+732) = 1.FC12387D06329P+8:10[61]1111
 \]

- Directed rounding, whole domain:
 \[
 \log(1.62A88613629B6P+678) = 1.D6479EBA7C971P+8:00[64]1110
 \]
Functions expm1 and log1p

Function expm1:
- Rounding to nearest, in $(-\infty, -2^{-51}] \cup [2^{-51}, +\infty)$:
 $$\expm1(1.274BBF1E4B1A2P-10) = 1.2776572C25129P-10 \times 10^{58}$$
- Directed rounding, in $(-\infty, -2^{-35}] \cup [2^{-35}, +\infty)$:
 (except the cases whose image is very close to -1)
 $$\expm1(1.83D4BCDEBB3F4P+2) = 1.AB50B409C8AEEP+8 \times 10^{57}$$
- Directed rounding, in $[-2^{-35}, -2^{-51}] \cup [-2^{-51}, -2^{-35}]$: (special)
 $$\expm1(-1.8000000000003P-49) = -1.7FFFFFFFFFFFAP-49 \times 10^{96}$$

Function log1p:
- Rounding to nearest, in $(-1, -2^{-37}] \cup [2^{-37}, +\infty)$:
 $$\log1p(1.FD15DAA6CE332P+732) = 1.FC12387D06329P+8 \times 10^{61}$$
- Rounding to nearest, in $[-2^{-37}, -2^{-51}] \cup [2^{-51}, 2^{-37}]$: (special)
 $$\log1p(1.8000000000003P-50) = 1.7FFFFFFFFFFFEP-50 \times 10^{99}$$
- Directed rounding, in $(-1, -2^{-37}] \cup [2^{-37}, +\infty)$:
 $$\log1p(1.62A88613629B6P+678) = 1.D6479EBA7C971P+8 \times 10^{64}$$
- Directed rounding, in $[-2^{-37}, -2^{-51}] \cup [2^{-51}, 2^{-37}]$: (special)
 $$\log1p(1.8000000000006P-49) = 1.7FFFFFFFFFFFDP-49 \times 10^{96}$$
Functions sinh and asinh

Function sinh:
- Rounding to nearest, in \([2^{-25}, +\infty)\):
 \[
 \text{sinh}(1.897374D74DE2AP-13) = 1.897374FE073E1P-13:10[56]1011
 \]
- Directed rounding, in \([2^{-16}, +\infty)\):
 \[
 \text{sinh}(1.E07E71BFCF06FP+5) = 1.91EC4412C344FP+85:00[55]1000
 \]
- Directed rounding, in \([2^{-25}, 2^{-16}]\): (special)
 \[
 \text{sinh}(1.DFFFFFFE3EP-20) = 1.E00000000FD1P-20:11[72]0001
 \]

Function asinh:
- Rounding to nearest, in \([2^{-25}, +\infty)\):
 \[
 \text{asinh}(1.FD15DAA6CE332P+731) = 1.FC12387D06329P+8:10[61]1111
 \]
- Directed rounding, in \([2^{-18}, +\infty)\):
 \[
 \text{asinh}(1.62A88613629B6P+677) = 1.D6479EBA7C971P+8:00[64]1110
 \]
- Directed rounding, in \([2^{-25}, 2^{-18}]\): (special)
 \[
 \text{asinh}(1.E00000000FD2P-20) = 1.DFFFFFFE3EP-20:00[72]1110
 \]
Functions \(\cosh \) and \(\text{acosh} \)

Function \(\cosh \):
- Rounding to nearest, in \([2^{-25}, +\infty)\):
 \[
 \cosh(1.EA5F2F2E4B0C5P+1) = 1.710DB0CD0FED5P+4:10[57]1110
 \]
- Directed rounding, in \([2^{-16}, +\infty)\):
 \[
 \cosh(1.E07E71BFCF06FP+5) = 1.91EC4412C344FP+85:00[55]1000
 \]
- Directed rounding, in \([2^{-25}, 2^{-16}]\): (special)
 \[
 \cosh(1.7FFFFFFFFFFFFFF7P-23) = 1.0000000000047P0:11[89]0010
 \]

Function \(\text{acosh} \):
- Rounding to nearest, in \([1, +\infty)\):
 \[
 \text{acosh}(1.297DE35D02E90P+13) = 1.3B562D2651A5DP+3:01[61]0001
 \]
- Directed rounding, in \([1, +\infty)\):
 \[
 \text{acosh}(1.62A88613629B6P+677) = 1.D6479EBA7C971P+8:00[64]1110
 \]
Functions \textit{sin} and \textit{asin}

Function \textit{sin}:
- Rounding to nearest, in $[2^{-25}, (1 + 4675/2^{13}) \cdot 2^1]$:
 \[\sin(1.598BAE9E632F6P-7) = 1.598A0AEA48996P-7:01[59]0000 \]
- Directed rounding, in $[2^{-18}, (1 + 4675/2^{13}) \cdot 2^1]$:
 \[\sin(1.FE767739D0F6DP-2) = 1.E9950730C4695P-2:11[65]0000 \]
- Directed rounding, in $[2^{-25}, 2^{-18}]$: (special)
 \[\sin(1.E0000000001C2P-20) = 1.DFFFFFFFFF02EP-20:00[72]1110 \]

Function \textit{asin}:
- Rounding to nearest, in $[2^{-25}, 1]$:
 \[\text{asin}(1.C373FF4AAD79BP-14) = 1.C373FF594D65AP-14:10[57]1010 \]
- Directed rounding, in $[2^{-18}, 1]$:
 \[\text{asin}(1.E9950730C4696P-2) = 1.FE767739D0F6DP-2:00[64]1000 \]
- Directed rounding, in $[2^{-25}, 2^{-18}]$: (special)
 \[\text{asin}(1.DFFFFFFFFF02EP-20) = 1.E0000000001C1P-20:11[72]0001 \]
Functions \cos and \arccos

Function \cos:

- Rounding to nearest, in $[0, \arccos(2^{-26})] \cup [\arccos(-2^{-27}), 4]$:
 \[
 \cos(1.34EC2F9FC9C00P+1) = -1.7E2A5C30E1D6DP-1:01[58]0110
 \]
- Directed rounding, in $[2^{-17}, \arccos(2^{-26})] \cup [\arccos(-2^{-27}), 4]$:
 \[
 \cos(1.06B505550E6B2P-9) = 1.FFFFBC9A3FBFEP-1:00[58]1100
 \]
- Directed rounding, in $[0, 2^{-17}]$:
 \[
 \cos(1.8000000000009P-23) = 1.FFFFFFFFFFF70P-1:00[88]1101
 \]

Function \arccos:

- Rounding to nearest, in $[-1, -2^{-27}] \cup [2^{-26}, 1]$:
 \[
 \arccos(1.53EA6C7255E88P-4) = 1.7CDACB6BBE707P0:01[57]0101
 \]
- Directed rounding, in $[-1, -2^{-27}] \cup [2^{-26}, 1]$:
 \[
 \arccos(1.FD737BE914578P-11) = 1.91E006D41D8D8P0:11[62]0010
 \]
Functions tan and atan

Function tan:

- Rounding to nearest, in $[2^{-18}, \pi/2]$:
 \[\tan(1.50486B2F87014P-5) = 1.5078CEBFF9C72P-5:10\]1001

- Rounding to nearest, in $[2^{-25}, 2^{-18}]$:
 \[\tan(1.DFFFFFF0FFFF0FP-22) = 1.E000000000151P-22:01\]0100

- Directed rounding, in $[2^{-17}, \pi/2]$:
 \[\tan(1.A33F32AC5CEB5P-3) = 1.A933FE176B375P-3:00\]1010

- Directed rounding, in $[2^{-25}, 2^{-17}]$:
 \[\tan(1.DFFFFFF0FFFFFC7CP-21) = 1.E000000000545P-21:11\]0100

Function atan:

- Rounding to nearest, in $(2^{-25}, +\infty)$:
 \[\atan(1.6298B5896ED3CP+1) = 1.3970E827504C6P0:10\]1101

- Directed rounding, in $(2^{-18}, +\infty)$:
 \[\atan(1.EB19A7B5C3292P+29) = 1.921FB540173D6P0:11\]0011

- Directed rounding, in $[2^{-25}, 2^{-18}]$:
 \[\atan(1.E000000000546P-21) = 1.DFFFFFF0FFFFFC7CP-21:00\]1011
Functions sin2pi and asin2pi

Warning! Results not guaranteed by readres.

Function sin2pi:
- Rounding to nearest, in $[2^{-58}, 1/2]$:
 $$\sin_{2\pi}(1.F339AB57731D3P-51) = 1.88173243FB0F4P-48:01[56]0010$$
- Directed rounding, in $[2^{-58}, 1/2]$:
 $$\sin_{2\pi}(1.BC03DF34E902CP-55) = 1.5CBA89AF1F855P-52:00[58]1101$$

Function asin2pi:
- Rounding to nearest, in $[2^{-57}\pi, 1]$:
 $$\text{asin}_{2\pi}(1.7718543A5606AP-29) = 1.DD95F913D2D22P-32:10[58]1011$$
- Directed rounding, in $[2^{-57}\pi, 1]$:
 $$\text{asin}_{2\pi}(1.5CBA89AF1F855P-52) = 1.BC03DF34E902BP-55:11[57]0111$$
Functions \(\cos 2\pi \) and \(\arccos 2\pi \)

Warning! Results not guaranteed by `readres`.

Function \(\cos 2\pi \):

- Rounding to nearest, in \([0, 1/2]\):
 \[
 \cos 2\pi(1.8242846E3D0AFP-25) = 1.FFFFFFFFFFE98P-1:01[57]0101
 \]
- Directed rounding, in \([0, 1/2]\):
 \[
 \cos 2\pi(1.B17C08C8AB938P-14) = 1.FFFFF8ECE1969P-1:00[55]1110
 \]

Function \(\arccos 2\pi \):

- Rounding to nearest, in \([-1, 1]\):
 \[
 \arccos 2\pi(1.6C6CBC45DC8DEP-49) = 1.FFFFFFFFFFFF1P-3:01[61]0001
 \]
 \[
 \arccos 2\pi(-1.6C6CBC45DC8DEP-48) = 1.00000000000000EP-2:10[61]1110
 \]
- Directed rounding, in \([-1, 1]\):
 \[
 \arccos 2\pi(1.6C6CBC45DC8DEP-48) = 1.FFFFFFFFFFFE2P-3:11[60]0001
 \]
 \[
 \arccos 2\pi(-1.6C6CBC45DC8DEP-47) = 1.00000000000001DP-2:00[60]1110
 \]
Functions $\tan 2\pi$ and $\arctan 2\pi$

Warning! Results not guaranteed by readres.

Function $\tan 2\pi$:
- Rounding to nearest, in $[2^{-58}, 1/4]$:
 $$\tan 2\pi(1.9E2371E233D1BP-35) = 1.45437A2EBE656P-32:10[56]1100$$
- Directed rounding, in $[2^{-58}, 1/4]$:
 $$\tan 2\pi(1.AC84C88F979A2P-55) = 1.508ECB38F52F9P-52:00[56]1000$$

Function $\arctan 2\pi$:
- Rounding to nearest, whole domain:
 $$\arctan 2\pi(1.E1A235BAB7461P+43) = 1.FFFFFFFFFFEA5P-3:10[59]1000$$
- Directed rounding, whole domain:
 $$\arctan 2\pi(1.E1A235BAB7461P+42) = 1.FFFFFFFFFFD4BP-3:00[58]1000$$
Functions exp2 and log2

Function exp2:
- Rounding to nearest, in $[-1/2, 1/2]$ (\rightarrow whole domain):
 \[\text{exp2}(1.1E4596526BF94DP-10) = 1.0053FC2EC2B53P0:01[59]0100 \]
- Directed rounding, in $[-1/2, 1/2]$ (\rightarrow whole domain):
 \[\text{exp2}(1.BFBBDE44EDFC5P-25) = 1.0000009B2C385P0:00[59]1011 \]

Function log2:
- Rounding to nearest, in $[1/2, +\infty)$ (\rightarrow whole domain):
 \[\text{log2}(1.1BA39FF28E3EAP+4) = 1.097767BB6B1E6P+2:10[54]1001 \]
- Directed rounding, in $[1/2, +\infty)$ (\rightarrow whole domain):
 \[\text{log2}(1.61555F75885B4P+512) = 1.003B81681E9B9P+9:11[55]0011 \]

Only HR cases whose exponent is a power of 2 are given.
Functions exp10 and log10

Function exp10:
- Rounding to nearest, whole domain:
 \(\text{exp10}(1.\text{A83B1CF779890P-26}) = 1.000000\text{F434FAAP0:01}[60]0101 \)
- Directed rounding, whole domain:
 \(\text{exp10}(-1.1416\text{C72A588A6P-1}) = 1.27\text{D838F22D09FP-2:11}[65]0010 \)

Function log10:
- Rounding to nearest, whole domain:
 \(\text{log10}(1.\text{E12D66744FF81P+429}) = 1.02\text{D4F53729E44P+7:10}[68]1001 \)
- Directed rounding, whole domain:
 \(\text{log10}(1.\text{CE41D8FA665FAP+4}) = 1.75\text{F49C6AD3BADP0:00}[66]1010 \)
Functions x^n

- For each integer n, only one binade to test, and switching from one n to the next one (and temporarily switching back when needed) is done automatically with the current scripts. The code became stable on 2011-11-25.
- The exponent range is assumed to be unbounded.
- For $|n|$ large, the approximation error by a low-degree polynomial is important.
- Since 2013-07-23 (for $n \geq 4981$), the default internal precision of 300 digits configured for Maple is no longer sufficient.
 This problem has been detected automatically. No wrong results!
 The clients are now started with an option setting the internal precision used by Maple to 350 digits.
- In the following slides, several HR cases may be given for each function class and rounding mode.
HR-Cases of x^n

Function `pown` for $-180 \leq n \leq -2$:

- **Rounding to nearest:**
 \[
 \text{pown}(1.EC658072F2432,-83) = 1.98AEB1A202D6EP-79:01[58]0100
 \]
 \[
 \text{pown}(1.AFC6556E8B8BF,-84) = 1.9272905F02088P-64:01[58]0101
 \]
 \[
 \text{pown}(1.C372354062FD0,-127) = 1.0B3A6186E8373P-104:01[58]0100
 \]

- **Directed rounding:**
 \[
 \text{pown}(1.A338DAE8C33B7,-166) = 1.D6E21F8ED2049P-119:00[58]1001
 \]
 \[
 \text{pown}(1.44C8DBB1C0114,-179) = 1.74CBC6427CF4DP-62:00[58]1010
 \]
 \[
 \text{pown}(1.527C94D2A1264,-179) = 1.D437BFF7CCB87P-73:11[58]0010
 \]

Function `rootn` (denoted `rtn`) for $-180 \leq n \leq -2$:

- **Rounding to nearest:**
 \[
 \text{rtn}(1.B7BDFD5807F33P-114,-180) = 1.8BE6BE4B400C2:01[71]0001
 \]

- **Directed rounding:**
 \[
 \text{rtn}(1.D6E21F8ED2049P-119,-166) = 1.A338DAE8C33B7:00[66]1100
 \]
 \[
 \text{rtn}(1.74CBC6427CF4DP-62,-179) = 1.44C8DBB1C0114:00[66]1100
 \]
 \[
 \text{rtn}(1.D437BFF7CCB87P-73,-179) = 1.527C94D2A1263:11[66]0001
 \]
HR-Cases of x^n [2]

Function `pown` for $3 \leq n \leq 5188$:

- **Rounding to nearest:**
 \[
 \text{pown}(1.5C69202D46821, 952) = 1.3B993E08AAD26P+423:10[63]1001 \\
 \text{pown}(1.C72CE7406B3CE, 1776) = 1.7D646B1EE4F67P+1474:01[64]0011
 \]

- **Directed rounding:**
 \[
 \text{pown}(1.290EB7BCC6A0E, 4025) = 1.B10D94BB8FD98P+863:11[63]0000
 \]

Function `rootn` (denoted `rtn`) for $3 \leq n \leq 5188$:

- **Rounding to nearest:**
 \[
 \text{rtn}(1.DCBA0C48B3F29P+253, 1039) = 1.2F4027B25ACDF:01[73]0100 \\
 \text{rtn}(1.AC171E04B83E0P+137, 1907) = 1.0D24A15B3F0AF:10[73]1101
 \]

- **Directed rounding:**
 \[
 \text{rtn}(1.C3EC89C7763F1P+1493, 2309) = 1.90DC35E30BD19:11[73]0001 \\
 \text{rtn}(1.7587F927AFFD8P+2911, 3592) = 1.C0FF5FB7FB24E:00[74]1101 \\
 \text{rtn}(1.BE49DF2392B0FP+2117, 3712) = 1.7C2D624C9A5C5:00[74]1111 \\
 \text{rtn}(1.B10D94BB8FD99P+863, 4025) = 1.290EB7BCC6A0E:00[75]1011
 \]
Progression of HR-Case Results for x^n
Average Computation Time

The following slides give graphs showing an estimate of the average computation time of each tested x^n (the full binade) for some machines.

Based on the actual tests of x^n (see previous slides), assuming that the total time is proportional to the time taken by the interval chunks that have been tested on the machine.

Some timings are surprising... Some of them can be explained, e.g. a change of the parameters of the algorithms before $n = 500$ (?).
Host courge

estimated number of hours for the full binade

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon)

Hardest-to-Round Cases – Part 2
Host patate
Host vin

estimated number of hours for the full binade

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon)

Hardest-to-Round Cases – Part 2

Journées TaMaDi, Lyon, 2013-10-08 25 / 30
Host ypig

- Estimated number of hours for the full binade.

2200
2400
2600
2800
3000
3200
3400
3600
3800
2000 2500 3000 3500 4000 4500 5000 5500

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon)

Hardest-to-Round Cases – Part 2
estimated number of hours for the full binade

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon)

Hardest-to-Round Cases – Part 2

Journées TaMaDi, Lyon, 2013-10-08 27 / 30
Host acalou

estimated number of hours for the full binade

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon)

Hardest-to-Round Cases – Part 2

Journées TaMaDi, Lyon, 2013-10-08 29 / 30
Host cassis

Estimated number of hours for the full binade

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon)

Hardest-to-Round Cases – Part 2

Journées TaMaDi, Lyon, 2013-10-08