Alternative Split Functions and Dekker's Product

Stef GRAILLAT

Vincent LEFÈVRE

Jean-Michel MULLER

Sorbonne Université

CNRS

CNRS

ENS de Lyon, Univ. Claude Bernard Lyon 1, LIP

(ARITH-27 paper, 2020, with additional remarks)

RAIM 2021, 2021-05-27

The context

- A binary floating-point system, precision *p*, no FMA.
- Assume no underflow, no overflow.
- Definition: A real number x fits in t bits if there exist integers M and q such that $x = M \cdot 2^q$ with $|M| < 2^t$.
- Property: The exact product of two FP numbers a and b fits in 2p bits. Thus one can write: $r_h + r_\ell = ab$ (several choices).
 - \rightarrow Algorithm using rounding to nearest (RN): Dekker's product, with $r_h = \text{RN}(ab)$ and $|r_\ell| \leqslant \frac{1}{2} \operatorname{ulp}(ab)$.
 - Applications: accurate algorithms for dot product, polynomial evaluation...
- This algorithm uses a basic block to split each FP input into two FP numbers that fit in $\lfloor p/2 \rfloor$ bits, so that one can compute products that fit in p bits and are therefore exact.
 - Note: if p is odd, $\lfloor p/2 \rfloor + \lfloor p/2 \rfloor = p-1$, but in base 2, one more bit of information with the sign of r_{ℓ} .
 - → Algorithm using rounding to nearest: Veltkamp's splitting.

Generalization in directed rounding modes

The main goal: generalize Dekker's product using a directed rounding mode, either toward $-\infty$ (downward: RD) or toward $+\infty$ (upward: RU).

Reason: changing the rounding mode may be expensive or impossible. Note: changing the rounding mode is currently not supported by GCC (GCC 10).

Dekker's product: compute the rounded product (to nearest) $r_h = RN(ab)$, then the error term $r_{\ell} = ab - r_h$ exactly.

In RD (or RU)¹: if $r_h = RD(ab)$, then $|ab - r_h| < ulp(ab)$, so that $ab - r_h$ fits in p bits, i.e. the error term is still exactly representable.

For the algorithm, we first need to be able to split a FP number...

¹ Here and later, input values are assumed to be \neq 0 for the explanations/proofs, but the algorithms will remain valid for 0, with null results.

Veltkamp's splitting

General algorithm with $2 \le s \le p-2$, depending on the position of the split. Here, $s = \lceil p/2 \rceil$. "RN" omitted for exact operations.

SplitRN (Veltkamp's splitting)

$$c \leftarrow \mathsf{RN}((2^s + 1) \cdot a)$$

$$a_h \leftarrow \mathsf{RN}(a - c) + c$$

$$a_\ell \leftarrow a - a_h$$
return (2, 2, 3)

return (a_h, a_ℓ)

How the algorithm works: mathematically, (a - c) + c = a, but here, with a rounding: c carefully chosen so that $a_h = RN_{p-s}(a)$.

 $a = a_h + a_\ell$, where a_h is a multiple of 2^s ulp(a) and a_ℓ is a multiple of ulp(a). Due to the use of RN, a_h is a rounded to nearest in precision $p - s = \lfloor p/2 \rfloor$. Consequence: $|a_\ell|$ is minimized.

Therefore, $|a_{\ell}|$ fits in s-1 bits, thus in $\lfloor p/2 \rfloor$ bits.

Splitting in directed rounding modes: SplitRD

This will not work so well, but one can write $a_{\ell} = A_{\ell} \cdot \text{ulp}(a)$ and the condition on a_{ℓ} can be loosened to $A_{\ell}^2 < 2^p$, which will be sufficient for Dekker's product in directed rounding modes: the exact partial products will fit in p bits.

Roughly speaking, we want to compute a splitting $a = a_h + a_\ell$ in an efficient way, where a_h is a "good" |p/2|-bit approximation to a_h in the sense that $|a_\ell|$ cannot be too large.

Assume rounding toward $-\infty$ (RD), with the restriction $a \ge 0$.

5/12

Splitting in directed rounding modes: SplitRD [2]

The first question: How do we build a_h ? [Veltkamp: RN(a-c)+c]

- \rightarrow With an operation of the form $RD(a^*-c)+c$, with $a^*\approx a$ using a simple operation, e.g. $a^*=RD(k\cdot a)$ where k is a constant close to 1.
 - Concerning c: Its only goal is to determine at which exponent to split. \rightarrow Very similar to Veltkamp's c. The rounding mode (here, RD vs RN) has no influence, except for the binade boundary for $a^* c$.
 - Concerning a^* : We wish to emulate RN (used in Veltkamp's splitting) with RD. We have RN(x) = RD(x + ulp(x)/2), except at some boundary points (not an issue). So we need $a^* \approx a + \text{ulp}(a c)/2$.
 - ▶ Simple operation \rightarrow not an equality: we are sometimes a bit wrong. But the condition on a_{ℓ} (thus on a_{h}) has been loosen.
 - With c of the order of $2^s \cdot a$, ulp(a-c) is of the order of $2^{-\lfloor p/2 \rfloor} \cdot a$, thus k would be around $1 + (1/2) \cdot 2^{-\lfloor p/2 \rfloor}$.
 - ▶ The optimal value of k (minimizing the bound on A_{ℓ}) can be found later, by analyzing the algorithm with k in some interval, and confirmed by testing.
 - ▶ Note: for a < 0, one would get k < 1 (not tried).

Splitting in directed rounding modes: SplitRD [3]

SplitRD, assuming
$$a \ge 0$$
.
uses $s = \lceil p/2 \rceil$ **and** $k = \mathsf{RN} \left(1 + \frac{2}{3} \cdot 2^{-\lfloor p/2 \rfloor} \right)$.
 $a^* \leftarrow \mathsf{RD}(k \cdot a)$
 $c \leftarrow \mathsf{RD}((2^s + 1) \cdot a^*)$
 $a_h \leftarrow \mathsf{RD}(a^* - c) + c$
 $a_\ell \leftarrow a - a_h$
return (a_h, a_ℓ)

Assuming $p \ge 2$ and $a \ge 0$:

- $a_h + a_\ell = a$:
- a_h is a multiple of 2^s ulp(a) and fits in $p-s=\lfloor p/2 \rfloor$ bits;
- a_{ℓ} is of the form $A_{\ell} \cdot \text{ulp}(a)$, where A_{ℓ} is an integer satisfying

$$|A_\ell| \leqslant \frac{4}{3} \cdot 2^{\lceil \rho/2 \rceil - 1} + \frac{5}{2} \quad \text{and} \quad A_\ell^2 < 2^\rho.$$

Note: Testing shows that a^* can be replaced by a in the computation of c, but not proved yet.

Splitting in directed rounding modes: SplitRD [4]

The proof: 2 pages. Interesting facts:

- The proof needs $p \ge 6$ for p even and $p \ge 11$ for p odd. \rightarrow Exhaustive tests to check the properties for the smaller values of p.
- The proof starts by assuming $k=1+\lambda\cdot 2^{s-p}=1+\lambda\cdot 2^{-\lfloor p/2\rfloor}$ with $0<\lambda\leqslant 1$. Note: in SplitRD, $\lambda\approx 2/3$.
- One gets $-\lambda \cdot 2^{-\lfloor p/2 \rfloor} \cdot a \leqslant a_{\ell} \leqslant -\lambda \cdot 2^{-\lfloor p/2 \rfloor} \cdot a + (2^s + 2) \cdot \text{ulp}(a)$, giving bounds that do not depend on a:

$$-2\lambda \cdot 2^{-\lfloor p/2\rfloor} \leqslant \frac{2^{\ell}}{2^{e_s}} \leqslant -\lambda \cdot 2^{-\lfloor p/2\rfloor} + (2^s + 2) \cdot 2^{1-p}.$$

• Best choice of λ obtained when the bounds are equal in absolute value, assuming that the bounds are tight. This gives

$$\lambda = \frac{2+2^s}{3} \cdot 2^{1-s} \approx \frac{2}{3}.$$

Splitting in directed rounding modes: SplitRU

For rounding toward $+\infty$ (RU), Algorithm SplitRU derived from SplitRD, thanks to the relation RU(x) = - RD(-x), and using a negative constant k' = -k.

SplitRU, assuming
$$a \ge 0$$
.
uses $s = \lceil p/2 \rceil$ **and** $k' = -\operatorname{RN} \left(1 + \frac{2}{3} \cdot 2^{-\lfloor p/2 \rfloor}\right)$.
 $a^* \leftarrow \operatorname{RU}(k' \cdot a)$
 $c \leftarrow \operatorname{RU}((2^s + 1) \cdot a^*)$
 $a_h \leftarrow -(\operatorname{RU}(a^* - c) + c)$
 $a_\ell \leftarrow a - a_h$
return (a_h, a_ℓ)

Compared to SplitRD, an additional operation (negation to get a_h).

Remark: It may probably be possible to avoid it, either by computing $c = RU(-(2^s + 1) \cdot a^*)$ or by choosing k' a bit less than 1.

But this would need to modify the proof.

Exact multiplication using SplitRD

Adaptation of Dekker's multiplication algorithm.

```
Dekker's product in rounding toward -\infty,
assuming p \ge 11, a \ge 0 and b \ge 0.
   uses s = \lceil p/2 \rceil.
    (a_h, a_\ell) \leftarrow \mathsf{SplitRD}(a)
   (b_h, b_\ell) \leftarrow \mathsf{SplitRD}(b)
   r_b \leftarrow \mathsf{RD}(a \cdot b)
    t_1 \leftarrow \mathsf{RD}(-r_h + \mathsf{RD}(a_h \cdot b_h))
                                                                                        (exact)
    t_2 \leftarrow \mathsf{RD}(t_1 + \mathsf{RD}(a_h \cdot b_\ell))
                                                                                        (exact)
    t_3 \leftarrow \mathsf{RD}(t_2 + \mathsf{RD}(a_\ell \cdot b_h))
                                                                                         (exact)
    r_{\ell} \leftarrow \mathsf{RD}(t_3 + \mathsf{RD}(a_{\ell} \cdot b_{\ell}))
                                                                                        (exact)
    return (r_h, r_\ell)
```

The FP numbers r_h and r_ℓ satisfy $r_h + r_\ell = ab$.

Remark: The condition $p \ge 11$ initially came from SplitRD, which is actually valid for $p \ge 2$. Then the proof just requires $p \ge 5$ (instead of $p \ge 3$ for RN).

10 / 12

Implementation and timings

SplitRN (Veltkamp), SplitRD and SplitRU implemented in C, using double.

- Compilers (in 2020) under Linux x86 64 (Debian/unstable): GCC 10 preversion, GCC 9.2.1, Clang 9.
- Compiler options: -frounding-math -std=c11 -03 -march=native.
- Assembly code analyzed. Function: some "move" instructions (one more with GCC 9.2.1) to follow the ABI, except when inlined (preferred).
- Test on an array of inputs (should fit in the cache), run several times.
- On an Intel Xeon CPU E5-2609 v3, with the GCC 10 preversion: without vectorization, +10% time for SplitRD and +17% time for SplitRU; with vectorization (default), all 3 algorithms take the same time.
- On other machines: (+4%, +7%) on POWER9, (+15%, +15%) on AArch64, up to (+17%, +34%) on AMD Opteron.
- But timings are very dependent on the context.
- SplitRN + fesetround(FE TONEAREST): loss of a factor 5!
 - \rightarrow SplitRD/RU can be very interesting when current rounding mode \neq RN.

Conclusion

- We have proposed alternatives to Veltkamp's splitting and Dekker's product for rounding toward $-\infty$ and rounding toward $+\infty$.
- Possible interest on architectures on which changing the rounding mode is expensive or impossible.
- According to exhaustive tests in small precisions, the best values of k for RD are RN $\left(1+\frac{2}{3}\cdot 2^{-\lfloor p/2\rfloor}\right)$ and RD $\left(1+\frac{2}{3}\cdot 2^{-\lfloor p/2\rfloor}\right)$, which are different for some values of p. Both yield a maximum value of $|A_\ell|$ equal to $\left\lfloor\frac{4}{3}\cdot 2^{\lceil p/2\rceil-1}\right\rfloor$ (note the absence of the additional term 5/2).

Possible future work: prove these properties in any precision.