
Alternative Split Functions and Dekker’s Product

Stef GRAILLAT Vincent LEFÈVRE Jean-Michel MULLER

Sorbonne Université Inria CNRS

CNRS, LIP6 ENS de Lyon, Univ. Claude Bernard Lyon 1, LIP

(ARITH-27 paper, 2020, with additional remarks)

RAIM 2021, 2021-05-27

[raim2021.tex 137881 2021-05-25 17:31:26Z vinc17/zira]

The context

A binary floating-point system, precision p, no FMA.

Assume no underflow, no overflow.

Definition: A real number x fits in t bits if there exist integers M and q

such that x = M · 2q with |M| < 2t .

Property: The exact product of two FP numbers a and b fits in 2p bits.
Thus one can write: rh + rℓ = ab (several choices).
→ Algorithm using rounding to nearest (RN): Dekker’s product, with
rh = RN(ab) and |rℓ| 6

1
2 ulp(ab).

Applications: accurate algorithms for dot product, polynomial evaluation. . .

This algorithm uses a basic block to split each FP input into two FP numbers
that fit in ⌊p/2⌋ bits, so that one can compute products that fit in p bits and
are therefore exact.
Note: if p is odd, ⌊p/2⌋+ ⌊p/2⌋ = p − 1, but in base 2, one more bit of
information with the sign of rℓ.
→ Algorithm using rounding to nearest: Veltkamp’s splitting.

[raim2021.tex 137881 2021-05-25 17:31:26Z vinc17/zira]

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Alternative Split Functions and Dekker’s Product RAIM 2021, 2021-05-27 2 / 12

Generalization in directed rounding modes

The main goal: generalize Dekker’s product using a directed rounding mode,
either toward −∞ (downward: RD) or toward +∞ (upward: RU).

Reason: changing the rounding mode may be expensive or impossible.
Note: changing the rounding mode is currently not supported by GCC (GCC 10).

Dekker’s product: compute the rounded product (to nearest) rh = RN(ab), then
the error term rℓ = ab − rh exactly.
In RD (or RU)1: if rh = RD(ab), then |ab − rh| < ulp(ab), so that ab − rh fits in
p bits, i.e. the error term is still exactly representable.

For the algorithm, we first need to be able to split a FP number. . .

1 Here and later, input values are assumed to be 6= 0 for the explanations/proofs, but the
algorithms will remain valid for 0, with null results.

[raim2021.tex 137881 2021-05-25 17:31:26Z vinc17/zira]

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Alternative Split Functions and Dekker’s Product RAIM 2021, 2021-05-27 3 / 12

Veltkamp’s splitting

General algorithm with 2 6 s 6 p − 2, depending on the position of the split.
Here, s = ⌈p/2⌉. “RN” omitted for exact operations.

SplitRN (Veltkamp’s splitting)

c ← RN((2s + 1) · a)
ah ← RN(a − c) + c

aℓ ← a − ah

return (ah, aℓ)

How the algorithm works: mathematically, (a − c) + c = a, but here, with a
rounding: c carefully chosen so that ah = RNp−s(a).

a = ah + aℓ, where ah is a multiple of 2s ulp(a) and aℓ is a multiple of ulp(a).
Due to the use of RN, ah is a rounded to nearest in precision p − s = ⌊p/2⌋.
Consequence: |aℓ| is minimized.

Therefore, |aℓ| fits in s − 1 bits, thus in ⌊p/2⌋ bits.

[raim2021.tex 137881 2021-05-25 17:31:26Z vinc17/zira]

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Alternative Split Functions and Dekker’s Product RAIM 2021, 2021-05-27 4 / 12

Splitting in directed rounding modes: SplitRD

This will not work so well, but one can write aℓ = Aℓ · ulp(a) and the condition
on aℓ can be loosened to A2

ℓ < 2p, which will be sufficient for Dekker’s product
in directed rounding modes: the exact partial products will fit in p bits.

Roughly speaking, we want to compute a splitting a = ah + aℓ in an efficient way,
where ah is a “good” ⌊p/2⌋-bit approximation to a, in the sense that |aℓ| cannot
be too large.

Assume rounding toward −∞ (RD), with the restriction a > 0.

[raim2021.tex 137881 2021-05-25 17:31:26Z vinc17/zira]

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Alternative Split Functions and Dekker’s Product RAIM 2021, 2021-05-27 5 / 12

Splitting in directed rounding modes: SplitRD [2]

The first question: How do we build ah? [Veltkamp: RN(a − c) + c]

→ With an operation of the form RD(a∗ − c) + c , with a∗ ≈ a using a simple
operation, e.g. a∗ = RD(k · a) where k is a constant close to 1.

Concerning c : Its only goal is to determine at which exponent to split.
→ Very similar to Veltkamp’s c . The rounding mode (here, RD vs RN)
has no influence, except for the binade boundary for a∗ − c .

Concerning a∗: We wish to emulate RN (used in Veltkamp’s splitting) with
RD. We have RN(x) = RD(x + ulp(x)/2), except at some boundary points
(not an issue). So we need a∗ ≈ a + ulp(a − c)/2.

◮ Simple operation → not an equality: we are sometimes a bit wrong. But the
condition on aℓ (thus on ah) has been loosen.

◮ With c of the order of 2s
· a, ulp(a − c) is of the order of 2−⌊p/2⌋

· a, thus k

would be around 1 + (1/2) · 2−⌊p/2⌋.
◮ The optimal value of k (minimizing the bound on Aℓ) can be found later, by

analyzing the algorithm with k in some interval, and confirmed by testing.
◮ Note: for a < 0, one would get k < 1 (not tried).

[raim2021.tex 137881 2021-05-25 17:31:26Z vinc17/zira]

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Alternative Split Functions and Dekker’s Product RAIM 2021, 2021-05-27 6 / 12

Splitting in directed rounding modes: SplitRD [3]

SplitRD, assuming a > 0.

uses s = ⌈p/2⌉ and k = RN
(

1 + 2
3 · 2

−⌊p/2⌋
)

.
a∗ ← RD(k · a)
c ← RD((2s + 1) · a∗)
ah ← RD(a∗ − c) + c

aℓ ← a − ah

return (ah, aℓ)

Assuming p > 2 and a > 0:

ah + aℓ = a;

ah is a multiple of 2s ulp(a) and fits in p − s = ⌊p/2⌋ bits;

aℓ is of the form Aℓ · ulp(a), where Aℓ is an integer satisfying

|Aℓ| 6
4
3
· 2⌈p/2⌉−1 +

5
2

and A2
ℓ < 2p.

Note: Testing shows that a∗ can be replaced by a in the computation of c, but not proved yet.

[raim2021.tex 137881 2021-05-25 17:31:26Z vinc17/zira]

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Alternative Split Functions and Dekker’s Product RAIM 2021, 2021-05-27 7 / 12

Splitting in directed rounding modes: SplitRD [4]

The proof: 2 pages. Interesting facts:

The proof needs p > 6 for p even and p > 11 for p odd.
→ Exhaustive tests to check the properties for the smaller values of p.

The proof starts by assuming k = 1 + λ · 2s−p = 1 + λ · 2−⌊p/2⌋ with
0 < λ 6 1. Note: in SplitRD, λ ≈ 2/3.

One gets −λ · 2−⌊p/2⌋ · a 6 aℓ 6 −λ · 2−⌊p/2⌋ · a + (2s + 2) · ulp(a),
giving bounds that do not depend on a:

−2λ · 2−⌊p/2⌋
6

aℓ

2ea
6 −λ · 2−⌊p/2⌋ + (2s + 2) · 21−p.

Best choice of λ obtained when the bounds are equal in absolute value,
assuming that the bounds are tight. This gives

λ =
2 + 2s

3
· 21−s ≈

2
3

.

[raim2021.tex 137881 2021-05-25 17:31:26Z vinc17/zira]

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Alternative Split Functions and Dekker’s Product RAIM 2021, 2021-05-27 8 / 12

Splitting in directed rounding modes: SplitRU

For rounding toward +∞ (RU), Algorithm SplitRU derived from SplitRD, thanks
to the relation RU(x) = −RD(−x), and using a negative constant k ′ = −k.

SplitRU, assuming a > 0.

uses s = ⌈p/2⌉ and k ′ = −RN
(

1 + 2
3 · 2

−⌊p/2⌋
)

.
a∗ ← RU(k ′ · a)
c ← RU((2s + 1) · a∗)
ah ← −(RU(a∗ − c) + c)
aℓ ← a − ah

return (ah, aℓ)

Compared to SplitRD, an additional operation (negation to get ah).

Remark: It may probably be possible to avoid it, either by computing
c = RU(−(2s + 1) · a∗) or by choosing k ′ a bit less than 1.

But this would need to modify the proof.

[raim2021.tex 137881 2021-05-25 17:31:26Z vinc17/zira]

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Alternative Split Functions and Dekker’s Product RAIM 2021, 2021-05-27 9 / 12

Exact multiplication using SplitRD
Adaptation of Dekker’s multiplication algorithm.

Dekker’s product in rounding toward −∞,
assuming p > 11, a > 0 and b > 0.

uses s = ⌈p/2⌉.
(ah, aℓ)← SplitRD(a)
(bh, bℓ)← SplitRD(b)
rh ← RD(a · b)
t1 ← RD(−rh + RD(ah · bh)) (exact)
t2 ← RD(t1 + RD(ah · bℓ)) (exact)
t3 ← RD(t2 + RD(aℓ · bh)) (exact)
rℓ ← RD(t3 + RD(aℓ · bℓ)) (exact)
return (rh, rℓ)

The FP numbers rh and rℓ satisfy rh + rℓ = ab.

Remark: The condition p > 11 initially came from SplitRD, which is actually valid
for p > 2. Then the proof just requires p > 5 (instead of p > 3 for RN).

[raim2021.tex 137881 2021-05-25 17:31:26Z vinc17/zira]

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Alternative Split Functions and Dekker’s Product RAIM 2021, 2021-05-27 10 / 12

Implementation and timings

SplitRN (Veltkamp), SplitRD and SplitRU implemented in C, using double.

Compilers (in 2020) under Linux x86_64 (Debian/unstable):
GCC 10 preversion, GCC 9.2.1, Clang 9.

Compiler options: -frounding-math -std=c11 -O3 -march=native.

Assembly code analyzed. Function: some “move” instructions (one more
with GCC 9.2.1) to follow the ABI, except when inlined (preferred).

Test on an array of inputs (should fit in the cache), run several times.

On an Intel Xeon CPU E5-2609 v3, with the GCC 10 preversion:
without vectorization, +10% time for SplitRD and +17% time for SplitRU;
with vectorization (default), all 3 algorithms take the same time.

On other machines: (+4%, +7%) on POWER9, (+15%, +15%) on AArch64,
up to (+17%, +34%) on AMD Opteron.

But timings are very dependent on the context.

SplitRN + fesetround(FE_TONEAREST): loss of a factor 5!
→ SplitRD/RU can be very interesting when current rounding mode 6= RN.

[raim2021.tex 137881 2021-05-25 17:31:26Z vinc17/zira]

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Alternative Split Functions and Dekker’s Product RAIM 2021, 2021-05-27 11 / 12

Conclusion

We have proposed alternatives to Veltkamp’s splitting and Dekker’s product
for rounding toward −∞ and rounding toward +∞.

Possible interest on architectures on which changing the rounding mode is
expensive or impossible.

According to exhaustive tests in small precisions, the best values of k for RD
are RN

(

1 + 2
3 · 2

−⌊p/2⌋
)

and RD
(

1 + 2
3 · 2

−⌊p/2⌋
)

, which are different for
some values of p. Both yield a maximum value of |Aℓ| equal to

⌊

4
3 · 2

⌈p/2⌉−1
⌋

(note the absence of the additional term 5/2).
Possible future work: prove these properties in any precision.

[raim2021.tex 137881 2021-05-25 17:31:26Z vinc17/zira]

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Alternative Split Functions and Dekker’s Product RAIM 2021, 2021-05-27 12 / 12

	The context
	Generalization in directed rounding modes
	Veltkamp's splitting
	Splitting in directed rounding modes: SplitRD
	Splitting in directed rounding modes: SplitRU
	Exact multiplication using SplitRD
	Implementation and timings
	Conclusion

