Alternative Split Functions and Dekker's Product

Stef GRAILLAT Vincent LEFEVRE Jean-Michel MULLER

Sorbonne Université Inria CNRS
CNRS, LIP6 ENS de Lyon, Univ. Claude Bernard Lyon 1, LIP

(ARITH-27 paper, 2020, with additional remarks)

RAIM 2021, 2021-05-27

[raim2021.tex 137881 2021-05-25 17:31:26Z vinc17/ziral

The context

A binary floating-point system, precision p, no FMA.
@ Assume no underflow, no overflow.

@ Definition: A real number x fits in t bits if there exist integers M and g
such that x = M - 29 with |M| < 2%
@ Property: The exact product of two FP numbers a and b fits in 2p bits.
Thus one can write: r, + r; = ab (several choices).
— Algorithm using rounding to nearest (RN): Dekker's product, with
rn = RN(ab) and |r;| < ulp(ab).
Applications: accurate algorithms for dot product, polynomial evaluation. ..
@ This algorithm uses a basic block to split each FP input into two FP numbers
that fit in | p/2] bits, so that one can compute products that fit in p bits and
are therefore exact.
Note: if p is odd, |p/2] 4+ |p/2] = p — 1, but in base 2, one more bit of
information with the sign of ry.
— Algorithm using rounding to nearest: Veltkamp's splitting.

[raim2021.tex 137881 2021-05-25 17:31:26Z vincl17/ziral

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Alternative Split Functions and Dekker's Product RAIM 2021, 2021-05-27 2/12

Generalization in directed rounding modes

The main goal: generalize Dekker's product using a directed rounding mode,
either toward —oo (downward: RD) or toward +oo (upward: RU).

Reason: changing the rounding mode may be expensive or impossible.
Note: changing the rounding mode is currently not supported by GCC (GCC 10).

Dekker's product: compute the rounded product (to nearest) r, = RN(ab), then
the error term r; = ab — r, exactly.

In RD (or RU)!: if r, = RD(ab), then |ab — | < ulp(ab), so that ab — ry fits in
p bits, i.e. the error term is still exactly representable.

For the algorithm, we first need to be able to split a FP number. ..

! Here and later, input values are assumed to be # 0 for the explanations/proofs, but the
algorithms will remain valid for 0, with null results.

[raim2021.tex 137881 2021-05-25 17:31:26Z vincl17/ziral

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Alternative Split Functions and Dekker's Product RAIM 2021, 2021-05-27 3/12

Veltkamp's splitting

General algorithm with 2 < s < p — 2, depending on the position of the split.
Here, s = [p/2]. “RN" omitted for exact operations.

SplitRN (Veltkamp's splitting)
¢ < RN((2°+1)-a)
ap < RN(a—c)+¢
dy < a— ap
return (ap, a,)

How the algorithm works: mathematically, (a — ¢) 4+ ¢ = a, but here, with a
rounding: ¢ carefully chosen so that ay = RN,_4(a).

a = ap + ay, where a, is a multiple of 2° ulp(a) and a; is a multiple of ulp(a).
Due to the use of RN, ap, is a rounded to nearest in precision p —s = |p/2].
Consequence: |ay| is minimized.

Therefore, |ay| fits in s — 1 bits, thus in |p/2] bits.

[raim2021.tex 137881 2021-05-25 17:31:26Z vincl17/ziral

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Alternative Split Functions and Dekker’s Product RAIM 2021, 2021-05-27 4/12

Splitting in directed rounding modes: SplitRD

This will not work so well, but one can write a; = Ay - ulp(a) and the condition
on ay can be loosened to A7 < 27, which will be sufficient for Dekker’s product
in directed rounding modes: the exact partial products will fit in p bits.

Roughly speaking, we want to compute a splitting a = a, + ag in an efficient way,
where ap, is a “good” | p/2]-bit approximation to a, in the sense that |ay| cannot
be too large.

Assume rounding toward —oo (RD), with the restriction a > 0.

[raim2021.tex 137881 2021-05-25 17:31:26Z vincl17/ziral

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Alternative Split Functions and Dekker’s Product RAIM 2021, 2021-05-27 5/12

Splitting in directed rounding modes: SplitRD [2]

The first question: How do we build a,7 [Veltkamp: RN(a — ¢) +]

— With an operation of the form RD(a* — ¢) + ¢, with a* & a using a simple
operation, e.g. a* = RD(k - a) where k is a constant close to 1.

@ Concerning c: Its only goal is to determine at which exponent to split.
— Very similar to Veltkamp's c. The rounding mode (here, RD vs RN)
has no influence, except for the binade boundary for a* — c.

o Concerning a*: We wish to emulate RN (used in Veltkamp's splitting) with
RD. We have RN(x) = RD(x + ulp(x)/2), except at some boundary points
(not an issue). So we need a* &~ a + ulp(a — ¢)/2.

» Simple operation — not an equality: we are sometimes a bit wrong. But the
condition on a, (thus on as) has been loosen.

» With ¢ of the order of 2° - a, ulp(a — c) is of the order of 271P/2] . 4 thus k
would be around 1+ (1/2) -2~ P/2],

» The optimal value of k (minimizing the bound on A;) can be found later, by
analyzing the algorithm with k in some interval, and confirmed by testing.

» Note: for a < 0, one would get k < 1 (not tried).

[raim2021.tex 137881 2021-05-25 17:31:26Z vincl17/ziral

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Alternative Split Functions and Dekker's Product RAIM 2021, 2021-05-27 6/12

Splitting in directed rounding modes: SplitRD [3]

SplitRD, assuming a > 0.

uses s = [p/2] and k = RN (1 + 2. 27(P/2]).
a* < RD(k - a)

c + RD((2° +1) - a%)

ap + RD(a* —¢) + ¢

dy < a— ap

return (ap, a;)

Assuming p > 2 and a > 0:
@ ap+ay = a;
@ aj, is a multiple of 2° ulp(a) and fits in p — s = | p/2] bits;
@ ay is of the form A - ulp(a), where Ay is an integer satisfying

N

5
|A[| < 5.2’—P/2-|—1+§ and A% <2P

Note: Testing shows that a* can be replaced by a in the computation of ¢, but not proved yet.

[raim2021.tex 137881 2021-05-25 17:31:26Z vincl17/ziral

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Alternative Split Functions and Dekker’s Product RAIM 2021, 2021-05-27 7/12

Splitting in directed rounding modes: SplitRD [4]

The proof: 2 pages. Interesting facts:

@ The proof needs p > 6 for p even and p > 11 for p odd.
— Exhaustive tests to check the properties for the smaller values of p.

@ The proof starts by assuming k =14 \-25P =1+ X -2~ [P/2] with
0 < A <1 Note: in SplitRD A= 2/3.

@ One gets —\-271P/21 .3 < ap < —N-271P/20 . 3 4 (2° +2) - ulp(a),
giving bounds that do not depend on a:

—ox-27lP2h ¢ 2 2 < —X-271P20 (25 4 2) . 2P,
@ Best choice of A\ obtained when the bounds are equal in absolute value,
assuming that the bounds are tight. This gives

2425
A=12 glsn f
3 3

[raim2021.tex 137881 2021-05-25 17:31:26Z vincl17/ziral

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Alternative Split Functions and Dekker’s Product RAIM 2021, 2021-05-27 8/12

Splitting in directed rounding modes: SplitRU

For rounding toward +o00 (RU), Algorithm SplitRU derived from SplitRD, thanks
to the relation RU(x) = — RD(—x), and using a negative constant k' = —k.

SplitRU, assuming a > 0.

uses s = [p/2] and k' = —RN (1 + 2. 2-p/2)),
a* + RU(K - a)

c + RU((2°+1)-a%)

ap +— —(RU(a* —¢) + ¢)

dy <— a— ap

return (ap, as)

Compared to SplitRD, an additional operation (negation to get aj).

Remark: It may probably be possible to avoid it, either by computing
¢ = RU(—(2° 4+ 1) - a*) or by choosing k’ a bit less than 1.

But this would need to modify the proof.

[raim2021.tex 137881 2021-05-25 17:31:26Z vincl17/ziral

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Alternative Split Functions and Dekker's Product RAIM 2021, 2021-05-27 9/12

Exact multiplication using SplitRD

Adaptation of Dekker's multiplication algorithm.

Dekker's product in rounding toward —oo,
assuming p > 11, a> 0 and b > 0.

uses s = [p/2].

(an, a¢) < SplitRD(a)

(by, by) « SplitRD(b)

rp < RD(B . b)

t] < RD(—r;, aF RD(ah ° bh)) (

th <+ RD(tl aF RD(ah . bg)) (

t3 - RD(t, + RD(a - by)) (exact)
ry <— RD(t3 a4 RD(ag . bg)) (
return (rp, ry)

The FP numbers ry, and r; satisfy r, + r, = ab.

Remark: The condition p > 11 initially came from SplitRD, which is actually valid
for p > 2. Then the proof just requires p > 5 (instead of p > 3 for RN).

[raim2021.tex 137881 2021-05-25 17:31:26Z vincl17/ziral

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Alternative Split Functions and Dekker's Product RAIM 2021, 2021-05-27 10/12

Implementation and timings

SplitRN (Veltkamp), SplitRD and SplitRU implemented in C, using double.

o Compilers (in 2020) under Linux x86_64 (Debian/unstable):
GCC 10 preversion, GCC 9.2.1, Clang 9.

@ Compiler options: -frounding-math -std=cl11 -03 -march=native.

@ Assembly code analyzed. Function: some “move” instructions (one more
with GCC 9.2.1) to follow the ABI, except when inlined (preferred).

@ Test on an array of inputs (should fit in the cache), run several times.

@ On an Intel Xeon CPU E5-2609 v3, with the GCC 10 preversion:

without vectorization, +10% time for SplitRD and +17% time for SplitRU;
with vectorization (default), all 3 algorithms take the same time.

@ On other machines: (+4%, +7%) on POWER9, (+15%,+15%) on AArch64,
up to (+17%,+34%) on AMD Opteron.
@ But timings are very dependent on the context.

@ SplitRN + fesetround (FE_TONEAREST): loss of a factor 5!
— SplitRD/RU can be very interesting when current rounding mode # RN.

[raim2021.tex 137881 2021-05-25 17:31:26Z vincl17/ziral

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Alternative Split Functions and Dekker's Product RAIM 2021, 2021-05-27 11/12

Conclusion

@ We have proposed alternatives to Veltkamp’s splitting and Dekker's product
for rounding toward —oo and rounding toward +oc.

@ Possible interest on architectures on which changing the rounding mode is
expensive or impossible.

@ According to exhaustive tests in small precisions, the best values of k for RD
are RN (1 + % . 2’LP/2J) and RD (1 + % . 2’LP/2J), which are different for
some values of p. Both yield a maximum value of |A| equal to |3 - 2/P/21-1|
(note the absence of the additional term 5/2).

Possible future work: prove these properties in any precision.

[raim2021.tex 137881 2021-05-25 17:31:26Z vincl17/ziral

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Alternative Split Functions and Dekker's Product RAIM 2021, 2021-05-27 12 /12

	The context
	Generalization in directed rounding modes
	Veltkamp's splitting
	Splitting in directed rounding modes: SplitRD
	Splitting in directed rounding modes: SplitRU
	Exact multiplication using SplitRD
	Implementation and timings
	Conclusion

