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The floating-point system

The floating-point system:

Radix β = 2 (?), precision p.

Rounding to nearest (RN), with any choice in case of a tie.

Basic operations: +, −, ×, and FMA/FMS.

Usual assumption: underflow/overflow do not occur.

Note: tests done with the even-rounding rule (ties to even).

Bound on the relative error when rounding a real number x (the exact result of
an operation):

|RN(x)− x | 6 u

1 + u
· |x | 6 u · |x |

where u = 1
2 β1−p = 2−p (rounding unit).

The last inequality is strict when x 6= 0.

We will use in the proofs: |RN(x)− x | 6 u · |x | and |RN(x)| 6 (1 + u) · |x |.
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Double-word numbers

To get more accurate results: double-word numbers (DW).

A representation of a number x by a pair (xh, xℓ) of FP numbers such that

{

x = xh + xℓ

|xℓ| 6 1
2 ulp(x) 6 u · |x |.

Note: if x is a real number, xh = RN(x), and the error term xℓ = x − xh is
exactly representable, then (xh, xℓ) is a DW number.

Also called double-double in the literature (with basic FP format = double).

Algorithms and libraries for manipulating DW numbers:
QD (Hida, Li & Bailey), Campary (Joldes, Popescu & others).
Also part of libgcc on PowerPC (C type “long double”).

Use the 2Sum, Fast2Sum & Fast2Mult algorithms (see next slides).
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Advanced operations: Error-Free Transforms

In rounding to nearest (RN), the error term of an addition or multiplication of two
FP numbers is exactly representable.

Operations that return the rounded result and the error term:

Addition: one gets s = RN(a + b) and t such that a + b = s + t.

Multiplication: one gets π = RN(ab) and ρ such that ab = π + ρ.

→ Error-Free Transforms.

New in the 2019 revision of the IEEE 754 standard (IEEE 754-2019):
recommended augmented arithmetic operations.

They have the above properties (with ties rounded toward zero).

They are intended to be implemented in hardware.

But no hardware implementations yet.

→ Use of the classical 2Sum and Fast2Mult algorithms.
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2Sum and Fast2Mult algorithms

Expressing a + b as a DW number

2Sum(a, b). Returns s and t such that s = RN(a + b) and a + b = s + t.

s ← RN(a + b)
a′ ← RN(s − b)
b′ ← RN(s − a′)
δa ← RN(a − a′)
δb ← RN(b − b′)
t ← RN(δa + δb)

Expressing ab as a DW number

Fast2Mult(a, b). Returns π and ρ such that π = RN(ab) and ab = π + ρ.

π ← RN(ab)
ρ ← RN(ab − π)
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Naive algorithms for complex FP multiplication
Straightforward transcription of the formula

z = zR + iz I = (a + ib) · (c + id) = (ac − bd) + i · (ad + bc)

→ Approximate result ẑ .

Bad solution if the componentwise relative error is to be minimized.

Adequate solution if the normwise relative error |(ẑ − z)/z | is at stake.

Algorithms:

If no FMA instruction is available:
{

ẑR = RN(RN(ac)− RN(bd))
ẑ I = RN(RN(ad) + RN(bc))

(1)

If an FMA instruction is available:
{

ẑR = RN(ac − RN(bd))
ẑ I = RN(ad + RN(bc))

(2)

[raim2019.tex 123312 2019-11-27 01:07:07Z vinc17/zira]

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Accurate Complex Multiplication in FP Arithmetic RAIM 2019, Toulon, 2019-11-27 7 / 30



Naive algorithms for complex FP multiplication [2]

Algorithms:

If no FMA instruction is available:
{

ẑR = RN(RN(ac)− RN(bd))
ẑ I = RN(RN(ad) + RN(bc))

(1)

If an FMA instruction is available:
{

ẑR = RN(ac − RN(bd))
ẑ I = RN(ad + RN(bc))

(2)

Asymptotically optimal bounds on the normwise relative error of (1) and (2) are
known:

for (1): bound
√

5 · u (Brent et al., 2007);

for (2): bound 2 · u (Jeannerod et al., 2017).
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Accurate complex multiplication

Our goal:

smaller normwise relative errors,

closer to the best possible one (≈ u, unless we output DW numbers),

but at the cost of more complex algorithms.

We consider the product (a + ib) · (c + id), where

a and b are DW numbers (special FP case considered later), i.e.
a = ah + aℓ with |aℓ| 6 1

2 ulp(a) and b = bh + bℓ with |bℓ| 6 1
2 ulp(b),

c and d are FP numbers.

Real part z
R of the result (similar for the imaginary part):

difference vh of the high-order parts of ac and bd ;

add approximated sum γ of all the error terms that may have a significant
influence on the normwise relative error.
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Computation of the real part (JMM’s version)

× FMA

+

Fast2Mult Fast2Mult

2Sum

+ + +

bℓ d aℓ c bh d ah c

ẑR

ρ1

e2

e2

w2
e1 w1

vℓ vh

ρ2

ρ3 σ γ
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The multiplication algorithm (JMM’s version)

Computation of the real part of (a + ib) · (c + id). [(DW,FP) → FP]

Computes zR = ac − bd , where a = ah + aℓ and b = bh + bℓ are DW numbers,
and c and d are FP numbers.

(w1, e1)← Fast2Mult(ah, c)
(w2, e2)← Fast2Mult(bh, d)
(vh, vℓ) ← 2Sum(w1,−w2)
ρ1 ← RN(bℓd)
ρ2 ← RN(aℓc − ρ1)
ρ3 ← RN(ρ2 − e2)
σ ← RN(ρ3 + e1)
γ ← RN(vℓ + σ)
ẑR ← RN(vh + γ)
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Error analysis

Only rounding errors (no ignored terms). Let us recall:

Bounds on rounding errors: |ǫx | = |RN(x)− x | 6 u · |x |.
Bounds on the variables: |RN(x)| 6 |x |+ |ǫx | 6 (1 + u) · |x |.

For the real part, we introduce: N = |ac|+ |bd | and n = |ac − bd |.
As N can be much larger than the absolute value of the exact result n, bounds
should be related to n if possible (→ n can appear only with the main term),
otherwise related to N.

For the main term:

|vh + vℓ| = |w1 − w2| 6 n + f (u) · N, with f (u) = O(u);

|vℓ| 6 u · n + u · f (u) · N;

|vh| 6 (1 + u) · n + (1 + u) · f (u) · N.

Bounds for the error terms (before vℓ is considered):
product of some function of u (in O(u2)) by N.
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Error analysis [2]

We show that
|ẑR − ℜ(z)| 6 αnR + βNR ,

|ẑ I − ℑ(z)| 6 αnI + βN I ,

with
NR = |ac| + |bd |,
nR = |ac − bd |,
N I = |ad | + |bc|,
nI = |ad + bc|,
α = u + 3u2 + u3,

β = 15u2 + 38u3 + 39u4 + 22u5 + 7u6 + u7.

Then we deduce

η2 =

(

ẑR − ℜ(z)
)2

+
(

ẑ I − ℑ(z)
)2

(ℜ(z))2 + (ℑ(z))2 6 α2 + (2αβ + β2) ·

(

NR
)2

+
(

N I
)2

(

nR
)2

+
(

nI
)2 .

Then we use
(

NR
)2

+
(

N I
)2

(

nR
)2

+
(

nI
)2 6 2.
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Error bound

Theorem 1

As soon as p > 4, the normwise relative error η = |(ẑ − z)/z | of the algorithm

from the previous slide satisfies

η < u + 33 u2.

Remember: the best possible bound is u/(1 + u) ≈ u.

Remarks:

The condition “p > 4” always holds in practice.

This algorithm can easily be transformed into an algorithm that returns the
real and imaginary parts of z as DW numbers (see later).

In the error terms, we bounded and simplified u/(1 + u) by u. This could
yield a small overestimation of the order-2 term in Theorem 1.
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Real and imaginary parts of z as DW numbers

To obtain the real and imaginary parts of z as DW numbers:

Replace the last FP addition ẑR ← RN(vh + γ) by a call to 2Sum(vh, γ).

Similar change for the imaginary part.

Resulting relative error
√

241 · u2 +O(u3) ≈ 15.53 u2 +O(u3)

(instead of u + 33 u2).

Interest:

iterative product z1 × z2 × · · · × zn: keep the real and imaginary parts of
the partial products as DW numbers;

Fourier transforms: when computing z1 ± ωz2, keep ℜ(ωz2) and ℑ(ωz2) as
DW numbers before the ±.
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If a and b are FP numbers: original algorithm

× FMA

+

Fast2Mult Fast2Mult

2Sum

+ + +

bℓ = 0 d aℓ = 0 c bh d ah c

ẑR

ρ1

e2

e2

w2
e1 w1

vℓ vh

ρ2

ρ3 σ γ
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If a and b are FP numbers: simplification (aℓ = bℓ = 0)

× FMA

+

Fast2Mult Fast2Mult

2Sum

+ + +

bℓ = 0 d aℓ = 0 c bh d ah c

ẑR

ρ1

e2

e2

w2
e1 w1

vℓ vh

ρ2

ρ3 σ γ
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If a and b are FP numbers: new algorithm

× FMA

+

Fast2Mult Fast2Mult

2Sum

+ + +

bℓ = 0 d aℓ = 0 c bh d ah c

ẑR

ρ1

e2

e2

w2
e1 w1

vℓ vh

ρ2

ρ3 σ γ
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If a and b are FP numbers: new algorithm [2]

Computation of the real part of (a + ib) · (c + id). [(FP,FP) → FP]

Computes zR = ac − bd , where a, b, c , d are FP numbers.

(w1, e1)← Fast2Mult(ah, c)
(w2, e2)← Fast2Mult(bh, d)
(vh, vℓ) ← 2Sum(w1,−w2)
σ ← RN(e1 − e2)
γ ← RN(vℓ + σ)
ẑR ← RN(vh + γ)

Similar to:

Cornea, Harrison and Tang’s algorithm for ab + cd , with a “+” replaced by a
2Sum;

Algorithm 5.3 in Ogita, Rump and Oishi’s Accurate sum & dot product (with
a different order of summation of e1, e2 and vℓ).
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If a and b are FP numbers: new algorithm [3]

The error bound u + 33 u2 of Theorem 1 still applies, but it can be slightly
improved:

Theorem 2

As soon as p > 4, the normwise relative error η = |(ẑ − z)/z | of the algorithm

from the previous slide satisfies

η < u + 19 u2.
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Implementation & experiments

Main algorithm [(DW,FP) → FP] implemented in binary64 (a.k.a.
double-precision) arithmetic, and compared with other solutions:

◮ naive formula in binary64 arithmetic;
◮ naive formula in binary128 arithmetic;
◮ GNU MPFR with precision ranging from 53 to 106 bits.

Loop over N random inputs, itself inside another loop doing K iterations.

Goal of the external loop: get accurate timings without having to choose a
large N, with input data that would not fit in the cache.

For each test, we chose (N, K ) = (1024, 65536), (2048, 32768), and
(4096, 16384).
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Implementation & experiments [2]

Tests run on two computers with a hardware FMA:
◮ x86_64 with Intel Xeon E5-2609 v3 CPUs, under Linux

(Debian/unstable), with GCC 8.2.0 and a Clang 8 preversion,
using -march=native;

◮ ppc64le with POWER9 CPUs (from the GCC Compile Farm1),
under Linux (CentOS 7), with GCC 8.2.1, using -mcpu=power9.

Options -O3 and -O2.

With GCC, -O3 -fno-tree-slp-vectorize also used to avoid a loss of
performance with some vectorized codes.2

In all cases, -static used to avoid the overhead due to function calls to
dynamic libraries.

1https://cfarm.tetaneutral.net/
2https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65847
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Implementation & experiments: Timings (x86_64, GCC)

Table 1: Timings on x86_64 (in seconds, for NK = 226 operations) with GCC. GNU MPFR is
used with separate ± and ×.

minimums maximums

N → 1024 2048 4096 1024 2048 4096

gcc

-O3

-f...

(DW,FP) → FP 0.92 0.97 0.97 0.95 1.02 1.02
Naive, binary64 0.61 0.61 0.62 0.61 0.62 0.62
Naive, binary128 21.32 21.44 21.46 21.43 21.53 21.54

GNU MPFR 12.59 13.01 13.12 22.72 22.85 22.80

gcc

-O2

(DW,FP) → FP 0.91 0.97 0.97 0.95 1.02 1.02
Naive, binary64 0.61 0.62 0.62 0.61 0.62 0.62
Naive, binary128 20.90 21.03 21.08 21.01 21.10 21.13

GNU MPFR 12.31 12.74 12.85 23.11 23.20 23.18
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Implementation & experiments: Timings (x86_64, Clang)

Table 2: Timings on x86_64 (in seconds, for NK = 226 operations) with Clang. GNU MPFR is
used with separate ± and ×.

minimums maximums

N → 1024 2048 4096 1024 2048 4096

clang

-O3

(DW,FP) → FP 0.86 1.09 1.10 0.96 1.15 1.15
Naive, binary64 0.39 0.61 0.63 0.47 0.65 0.66
Naive, binary128 21.65 21.77 21.81 21.74 21.87 21.88

GNU MPFR 12.24 12.63 12.72 22.91 22.94 22.97

clang

-O2

(DW,FP) → FP 0.88 1.08 1.10 0.96 1.14 1.15
Naive, binary64 0.40 0.61 0.63 0.48 0.65 0.66
Naive, binary128 21.33 21.45 21.50 21.49 21.57 21.59

GNU MPFR 12.15 12.54 12.65 23.15 23.21 23.21
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Implementation & experiments: Timings (POWER9)

Table 3: Timings on a POWER9 (in seconds, for NK = 226 operations). The POWER9 has
hardware support for binary128.

minimums maximums

N → 1024 2048 4096 1024 2048 4096

gcc

-O3

-f...

(DW,FP) → FP 0.97 0.97 0.97 0.98 0.99 1.00
Naive, binary64 0.47 0.47 0.51 0.48 0.48 0.52
Naive, binary128 2.22 2.22 2.22 2.24 2.24 2.24

GNU MPFR 16.42 16.59 16.66 30.06 30.39 30.44

gcc

-O2

(DW,FP) → FP 0.98 0.98 0.98 0.99 1.01 1.01
Naive, binary64 0.47 0.47 0.51 0.47 0.47 0.51
Naive, binary128 2.22 2.22 2.22 2.24 2.24 2.24

GNU MPFR 16.36 16.58 16.63 30.29 30.29 30.49
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Implementation & experiments: Timings summary

Naive formula in binary64 (inlined code) ≈ two times as fast as our
implementation of the main algorithm, but significantly less accurate;

Naive formula in binary128 using the __float128 C type (inlined code):
◮ on x86_64: from 19 to 25 times as slow as our main algorithm;
◮ on POWER9: 2.3 times as slow as our main algorithm.

GNU MPFR using precisions from 53 to 106: from 11 to 26 times as slow as
our main algorithm on x86_64, and from 17 to 31 times as slow on POWER9.
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Implementation & experiments: Errors

Largest errors found by random tests:

In binary32 arithmetic (p = 24), with

a = 0x1.fbec1ep−36 + −0x1.0ddbc2p−61
b = 0x1.ed2492p−1 + 0x1.2d60a2p−27
c = 0x1.09ca04p−1
d = 0x1.e85856p−28

the normwise relative error η is ≈ 0.99999990056894153671 u.

In binary64 arithmetic (p = 53), with

a = 0x1.ca8960d0529ap−50 + −0x1.d3bbedca6980bp−104
b = 0x1.5d23517609dcp−1 + −0x1.9cd4b29e547d9p−57
c = 0x1.776a8388a7d6cp−1
d = 0x1.defea2385e587p−79

the normwise relative error η is ≈ 0.99999974195846572521 u.

Note: smaller than the normwise relative error u/(1 + u) of the trivial case
(1 + u) · 1, i.e. with ah = 1, aℓ = u, bh = bℓ = 0, c = 1, d = 0.
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Other variants (work in progress)
The addition of the 5 error terms aℓc − bℓd + e1 − e2 + vℓ can be recombined in
various ways. Possible goals:

Minimize the number of operations by adding both aℓc and −bℓd with
FMAs. But what about the error?

Minimize the proven error bound (the worst case is unknown).

Minimize the average error (in absolute value) for some distribution.

Proposed change to minimize the number of operations (5 to 7% faster):

Old

ρ1 ← RN(bℓd)
ρ2 ← RN(aℓc − ρ1)
ρ3 ← RN(ρ2 − e2)
σ ← RN(ρ3 + e1)

→
New

r1 ← RN(aℓc + e1)
r2 ← RN(bℓd + e2)
σ ← RN(r1 − r2)

New normwise relative error bound: η < u + 23 u2 (instead of η < u + 33 u2).
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Other variants (work in progress) [2]

Old

ρ1 ← RN(bℓd)
ρ2 ← RN(aℓc − ρ1)
ρ3 ← RN(ρ2 − e2)
σ ← RN(ρ3 + e1)

→
New

r1 ← RN(aℓc + e1)
r2 ← RN(bℓd + e2)
σ ← RN(r1 − r2)

Two improvements concerning the proven error bound:

Fewer rounding errors: FMA instead of a multiplication and an addition
(this should also reduce the average error).

More symmetry, used in the proof:
◮ Old: |aℓc − ρ1| 6 u · |ac|+ (u + u2) · |bd |

6 (u + u2) · (|ac|+ |bd |) = (u + u2) · N,
i.e. an additional overestimation of u2 · |ac|.

◮ New: |r1| 6 (2 u + 3 u2 + u3) · |ac|,
|r2| 6 (2 u + 3 u2 + u3) · |bd |,

thus |r1 − r2| 6 (2 u + 3 u2 + u3) · N.
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Conclusion

Main algorithm:
◮ the real and imaginary parts of one of the operands of the multiplication

are DW, and for the other one they are FP;
◮ normwise relative error bound close to the best one (u/(1 + u) ≈ u) that

one can guarantee,
◮ only twice as slow as a naive multiplication,
◮ much faster than binary128 or multiple-precision software.

Multiple variants:
◮ depending on the types of the inputs (can all be FP) and the output

(can be DW);
◮ depending on the combination of the sums of the error terms in the

algorithm.
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