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Introduction / Outline

Worst cases for the correct rounding of xy in double precision:
2 floating-point arguments→ too many values to test.
But interesting partial results. . .

• My algorithm to search for all the worst cases of a numerically
regular unary function. Sublinear time complexity.

• Application to the integer power functions xn, where n is an
integer (not too large).
→ Joint work with Peter Kornerup and Jean-Michel Muller.

• Application to the detection of the exact cases of xy.
→ Joint work with Christoph Quirin Lauter.
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Lefèvre’s Algorithm: Introduction

1976: More general case (Hirschberg and Wong).

1997: Find a lower bound on the distance between a segment and Z
2.

I presented a first efficient algorithm (with low-level operations).
Complex proof. In fact, exact distance on a larger domain.

2005 (Arith’17): 2 improvements:

• A more geometrical and intuitive proof.

• A variant/improvement of the algorithm.

Today: simplified explanations. . .
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The Problem (Without Details)

Goal: the exhaustive test of the elementary functions for the TMD in
a fixed precision (e.g., in double precision), i.e. “find the breakpoint
numbers x such that f(x) is very close to a breakpoint number”.

Breakpoint number: machine number or “half-machine number”.
→Worst cases for f and the inverse function f−1.
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In each interval:

• f approached by a polynomial of degree 1→ segment y = b−ax.

• Multiplication of the coordinates by powers of 2→ grid = Z
2.

One searches for the values n such that {b− n.a} < d0,
where a, b and d0 are real numbers and n ∈ J0, N − 1K.

{x} denotes the positive fractional part of x.

0
1

2
3

4
5

0

1

2

3

4

5

0

1

2

3

4

5

Id: dagstuhl2008.tex 20724 2008-01-10 12:36:11Z lefevre 4/17 Dagstuhl Seminar 08021, January 6–11, 2008



Vincent LEFÈVRE, LIP / INRIA, France Some Worst Cases for the Correct Rounding of the Power Functions

• We chose a positive fractional part instead of centered.
→ An upward shift is taken into account in b and d0.

• If a is rational, then the sequence 0.a, 1.a, 2.a, 3.a, . . . (modulo 1)
is periodical.

→ This makes the theoretical analysis more difficult.

→ In the proof, one assumes a irrational, or equivalently, a
rational number + an arbitrary small irrational number.

But in the implementation, a is rational.

→ Extension to rational numbers by continuity.

→ Care has been taken with the inequality tests since they are
not continuous functions.
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Notations / Properties of k.amod 1 (0 ≤ k < n)

Configuration properties to be proved by induction, for some values
of n (determined by induction):

• Intervals x0, x1, . . . , xu−1 of length x, where x0 is the left-most
interval and xr = x0 + r.a (translation by r.amodulo 1).

• Intervals y0, y1, . . . , yv−1 of length y, where y0 is the right-most
interval and yr = y0 + r.a (translation by r.amodulo 1).

• Total number of points (or intervals): n = u+ v.

In short: 2 primary intervals x0 (left) and y0 (right) + images.

Initial configuration: n = 2, u = v = 1.
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Example: The First Configurations

With a = 17/45. Note: scaling by 45.
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From a Configuration to the Next One

• The main idea: when adding new points, one of the primary
intervals is affected first, then all its images are affected in the
same way.
For instance, see both intervals of length 17 on the figure and
how they are split on the following two configurations.

• We only need to focus on what occurs in the primary intervals.

• At the same time, we track the position of the point b:

– whether it is in an interval xk or in an interval yk;

– its distance to the left endpoint of the interval.
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How a Primary Interval is Split Into Two Intervals

• The primary interval has an endpoint of index 0 (no inverse
image). Letm be the index of the other endpoint.

• The new point n.a splits the interval into [m.a, n.a] and [n.a, 0.a].

• The points of indicesm and n are adjacent. → So are the points
of indicesm− 1 and n− 1, and their distance ℓ is either x or y.
→ Same distance between the points of indicesm and n.

• Only possibility: the primary interval of length h = max(x, y) is
split into 2 intervals of respective lengths ℓ = min(x, y) and h− ℓ
(→ similar to the subtractive Euclidean algorithm).

→ As a consequence, the point of index n is completely determined.
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Algorithms

Basic algorithm (1997): returns a lower bound d on {b− n.a} for
n ∈ J0, N − 1K (in fact, d is the exact distance for n ∈ J0, N ′ − 1K,
where N ≤ N ′ < 2N ).

Here: parameters chosen so that d > d0 in most intervals, allowing to
immediately conclude that there are no worst cases in the interval.

New algorithm (mentioned in 1998): returns the index n < N of the
first point such that {b− n.a} < d0, otherwise any value > N if there
are no such points.

Gives the information we need, but uses an additional variable, so
that it is slower. Good replacement for the naive algorithm.
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Another improvement: test with a shift (fast!) if it is interesting to
replace a sequence of iterations by a single one with a division.

The necessary data:

• lengths x and y, numbers u and v of these intervals;

• a binary value saying whether b is in an interval of length x or y;

• the index r of this interval (new algorithm only);

• the distance d between b and the left endpoint of this interval.

Immediate consequence of the properties:

• The left endpoint of an interval xr has index r.

• The left endpoint of an interval yr has index u+ r.
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Algorithm (Subtractive Version)

In red: additional instructions for the new algorithm.

Initialization: x = {a} ; y = 1− {a} ; d = {b} ; u = v = 1 ; r = 0 ;

if (d < d0) return 0

Unconditional loop:

if (d < x)

while (x < y)

if (u+ v > N) returnN

y = y − x; u = u+ v;

if (u+ v > N) returnN

x = x− y;

if (d > x) r = r + v;

v = v + u;

else

d = d− x;

if (d < d0) return r + u

while (y < x)

if (u+ v > N) returnN
x = x− y; v = v + u;

if (u+ v > N) returnN

y = y − x;

if (d < x) r = r + u;

u = u+ v;
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Application to the functions fn(x) = xn

• Only one exponent to test: fn(2x) = 2nfn(x) and fn(x) have the
same significand.

• Input interval [1, 2) decomposed into 213 = 8192 sub-intervals.

• For each sub-interval: the main test (see next slide).

• Second step to filter the spurious worst cases and the least
interesting ones.
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For each sub-interval:

• fn approximated by a degree-d polynomial (for n = 383, d = 11

to 13, with coefficients on 128 to 576 bits – TODO: reduce the size
of the longest coefficients since they are very small);

• code (C + mpn layer of GMP) is generated: my algorithm is
applied on sub-intervals of 215 = 32768 points (64-bit integer
arithmetic), and in case of failure, 212 = 4096 or (for large n)
211 = 2048 points, and if this still fails, the naive method;

• if supported, the code is compiled using -fprofile-generate

and tested on the first 28 = 256 sub-intervals;

• the code is recompiled using -fprofile-use and run.

n = 383: 140 to 250 seconds per sub-interval on a 2.2GHz Opteron.
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Current Results (to nearest, n from 3 to 388)

Values ofn: ∃ x such that the significand of xn has k identical bits after the rounding bit (exact cases excluded) k

32 48

76, 81, 85, 200, 259, 314, 330, 381 49

9, 15, 16, 31, 37, 47, 54, 55, 63, 65, 74, 80, 83, 86, 105, 109, 126, 130, 148, 156, 165, 168, 172, 179, 180, 195, 213, 214, 218,

222, 242, 255, 257, 276, 303, 306, 317, 318, 319, 325, 329, 342, 345, 346, 353, 358, 362, 364, 377, 383, 384
50

10, 14, 17, 19, 20, 23, 25, 33, 34, 36, 39, 40, 43, 46, 52, 53, 72, 73, 75, 78, 79, 82, 88, 90, 95, 99, 104, 110, 113, 115, 117,
118, 119, 123, 125, 129, 132, 133, 136, 140, 146, 149, 150, 155, 157, 158, 162, 166, 170, 174, 185, 188, 189, 192, 193, 197,
199, 201, 205, 209, 210, 211, 212, 224, 232, 235, 238, 239, 240, 241, 246, 251, 258, 260, 262, 265, 267, 272, 283, 286, 293,
295, 296, 301, 302, 308, 309, 324, 334, 335, 343, 347, 352, 356, 357, 359, 363, 365, 371, 372, 385

51

3, 5, 7, 8, 22, 26, 27, 29, 38, 42, 45, 48, 57, 60, 62, 64, 68, 69, 71, 77, 92, 93, 94, 96, 98, 108, 111, 116, 120, 121, 124, 127,
128, 131, 134, 139, 141, 152, 154, 161, 163, 164, 173, 175, 181, 182, 183, 184, 186, 196, 202, 206, 207, 215, 216, 217, 219,
220, 221, 223, 225, 227, 229, 245, 253, 256, 263, 266, 271, 277, 288, 290, 291, 292, 294, 298, 299, 305, 307, 321, 322, 323,
326, 332, 349, 351, 354, 366, 367, 369, 370, 373, 375, 378, 379, 380, 382

52

6, 12, 13, 21, 58, 59, 61, 66, 70, 102, 107, 112, 114, 137, 138, 145, 151, 153, 169, 176, 177, 194, 198, 204, 228, 243, 244,

249, 250, 261, 268, 275, 280, 281, 285, 297, 313, 320, 331, 333, 340, 341, 344, 350, 361, 368, 386, 387
53

4, 18, 44, 49, 50, 97, 100, 101, 103, 142, 167, 178, 187, 191, 203, 226, 230, 231, 236, 273, 282, 284, 287, 304, 310, 311, 312,

328, 338, 355, 374, 388
54

24, 28, 30, 41, 56, 67, 87, 122, 135, 143, 147, 159, 160, 190, 208, 248, 252, 264, 269, 270, 279, 289, 300, 315, 339, 376 55

89, 106, 171, 247, 254, 278, 316, 327, 348, 360 56

11, 84, 91, 234, 237, 274 57

35, 144, 233, 337 58

51, 336 59
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Fast Detection of the Exact Cases of xy

On the exact cases, Ziv’s iteration doesn’t terminate.
→ They need to be detected. With the knowledge of the worst case
on some input subset S, this can be done in a few cycles.

• Let x = 2Em, y = 2Fn, z = 2Gk, wherem, n, k are odd integers.
xy = z ⇔ 2E·2

Fnm2Fn = 2Gk ⇔ E · 2Fn = G ∧ m2Fn = k .

If n < 0, thenm = k = 1 (trivial case). Now assumem,n, k > 0.

• If xy is representable on 54 bits withm ≥ 3, then either one has
y ∈ J1, 34K or y is such that F ∈ J−5,−1K ∧ 1 ≤ n ≤ 33.

• Worst case of hy(m) = my for these values of y andm < 253 ?
Let X = 1 + (m− 1)/253. We test fy(X) =

(
1 + (X − 1) · 253

)y

in [1, 2) split into sub-intervals (of small lengths for small X).
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Search on the subset S (y /∈ Z, 80 values): 25 days on a small network.

Worst case:
xy = 1110101111001110.01010011000011000

10111001011000110001 1 0 . . . 0
︸ ︷︷ ︸

60 zeros

111 . . .

Algorithm for xy (implemented before the worst case was known):

• Filter simple cases (e.g. y = 2, 3, 4). Ad-hoc computation.

• 1st approximation. Rounding OK with probability ≈ 1− 2−7.

• 2nd approximation z = xy(1 + ε) with |ε| ≤ 2−117.
If |◦(z)− z| ≥ 2−116|z|, rounding OK.

• (x, y) ∈ S ? If yes, exact case. If no, resume Ziv’s iterations.

→ Ch. Lauter and V. Lefèvre, An efficient rounding boundary test for

pow(x,y) in double precision, IEEE TC, 2008.
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