MPFR – Main Features

C multiple-precision library based on GMP.

- MPFR number \(x \): floating-point number in base 2, with precision \(p_x \in [p_{\text{min}}, p_{\text{max}}] \) (where \(p_{\text{min}} = 2 \)) written

\[
x = s_x \times m_x \times 2^{e_x} \quad (x \neq 0)
\]

with sign \(s_x = \pm 1 \), \(p_x \)-bit mantissa \(m_x \in [1/2, 1[\), exponent \(e_x \in [e_{\text{min}}, e_{\text{max}}] \) (exponent range fixed by the user).

- Supported functions: arithmetic operations and math functions of ISO C99.

- Portable, completely specified results: exact rounding (4 standard rounding modes), overflows, underflows, NaN. (still in dev.)
Consequences

- Reproducible and accurate results (exact rounding).
- Proofs of algorithms or bounds on results. Interval arithmetic (directed rounding modes), e.g. with MPFI.
- Test other implementations / emulate other arithmetics (except subnormals). See example.

Efficiency:

- The precision can be chosen by the user (e.g. increased dynamically).
- Very fast routines from GMP.
Example 1: Test of Double-Precision Impl.

Something like:

```c
mpfr_t x, y, z;
double r;

mpfr_init2 (x, 53);
mpfr_init2 (y, 53);
mpfr_init2 (z, 53);
mpfr_exp (y, x, rnd);
r = mpfr_get_d1 (x);
r = exp (r);
mpfr_set_d (z, r, rnd);
```
Surprising...

```
#include <stdio.h>
#include <math.h>
#include <fenv.h>

int main (void)
{
    double x, y;
    fesetround (FE_TOWARDZERO);
    x = 1.06337362123585; y = exp (x);
    printf ("exp(%.17g) = %.17g\n", x, y);
    return 0; }
```

gives (on my machine – PowerBook G4 under Linux, libm 2.2.5)

```
exp(1.06337362123585) = 2.0022568270516627
```
Example 2: Rump’s Polynomial

\[f(a, b) = 333.75b^6 + a^2 (11a^2b^2 - b^6 - 121b^4 - 2) + 5.5b^8 + \frac{a}{2b} \]

with \(a = 77617.0 \) and \(b = 33096.0 \).

On an IBM 370:

- Single precision: 1.172603
- Double precision: 1.1726039400531
- Extended precision: 1.172603940053178
Example 3 (Jean-Michel Muller)

\[
\begin{align*}
 u_0 &= 2 \\
 u_1 &= -4 \\
 u_{n+1} &= 111 - \frac{1130}{u_n} + \frac{3000}{u_n u_{n-1}}
\end{align*}
\]

- \(u_n\) converges to 6 \(u_n = \frac{4 \times 5^{n+1} - 3 \times 6^{n+1}}{4 \times 5^n - 3 \times 6^n}\)
- on any machine \(u_n\) seems to converge to 100 very quickly.
Example 4 (Jean-Michel Muller)

\[
\begin{align*}
 x_0 &= 1.510005072136258 \\
 x_n &= f(x_{n-1}) \quad \text{with} \quad f(x) = \frac{3x^4 - 20x^3 + 35x^2 - 24}{4x^3 - 30x^2 + 70x - 50}
\end{align*}
\]
MPFR web page:

http://www.loria.fr/projets/mpfr/

or

http://www.mpfr.org/

E-mail: mpfr@loria.fr