Correctly Rounded Arbitrary-Precision Floating-Point Summation

Vincent LEFÈVRE

AriC, Inria Grenoble – Rhône-Alpes / LIP, ENS-Lyon

ARITH 23, Santa Clara, CA, USA

2016-07-11
Introduction to GNU MPFR

Goal: complete rewrite of the `mpfr_sum` function for the future GNU MPFR 4.

GNU MPFR in a few words:
- An efficient *multiple-precision floating-point* library with *correct rounding* (and signed zeros, infinities, NaN, and exceptions, but no subnormals).
- Radix 2. Each number has it *own precision* ≥ 1 (or 2 before MPFR 4).
- 5 rounding modes: nearest-even; toward $-\infty$, $+\infty$, 0; away from zero. The functions return the sign of the error: *ternary value*.

About the GNU MPFR internals:
- Based on GNU MP, mainly the low-level `mpn` layer. A multiple-precision natural number: array of 32-bit or 64-bit integers, called *limbs*.
- Representation of a floating-point number with 3 fields: sign, significand (array of limbs, with value in $[1/2, 1]$), exponent in $[1 - 2^{62}, 2^{62} - 1]$. Special data represented with special values in the exponent field.

`mpfr_sum`: *correctly rounded sum* of N numbers ($N \geq 0$).
The Old mpfr_sum Implementation

Demmel and Hida’s accurate summation algorithm + Ziv loop.

MPFR 3.1.3 [2015-06] and earlier: mpfr_sum was buggy with different precisions. Reference here: trunk r8851 / MPFR 3.1.4 [2016-03] (latest release).

Performance issues:

- The working precision must be the same for all inputs and the output. → The maximum precision had to be chosen as the base precision (bug fix).
- The exact result may be very close to a breakpoint. Uncommon case, but…
- Large exponent range → critical issue (e.g., crashes due to lack of memory).
- High-level for MPFR (mpfr_add calls). → Prevents good optimization.

Specification (behavior) issues:

- The sign of an exact zero result is not specified.
- The ternary value is valid only when zero is returned: for some exact results, one knows that they are exact, otherwise one has no information.
The New mpfr_sum Algorithm and Implementation

Goals:

- As fast as possible. In particular, the exponent range should no longer matter. → Low level (\textit{mpn}), based on the representation of the numbers.
- Completely specified. Exact result 0: same sign as a succession of binary +.

Basic ideas: \cite{r10503, 2016-06-24}

1. Handle \textbf{special inputs} (NaN, infinities, only zeros, $N_{\text{regular}} \leq 2$). Otherwise:
2. \textbf{Single memory allocation} (stack or heap): accumulator, temporary area...
3. Fixed-point \textbf{accumulation} by blocks in some window $[\text{minexp}, \text{maxexp}]$ (re-iterate with a shifted window in case of cancellation): \texttt{sum_raw}. Done in two’s complement representation.
4. If the \textbf{Table Maker’s Dilemma} (TMD) occurs, then compute the sign of the error term by using the same method (\texttt{sum_raw}) in a low precision.
5. \textbf{Copy/shift} the truncated result to the destination (\textit{normalized}).
6. \textbf{Convert} to sign + magnitude, with \textbf{correction term} at the same time.
The New mpfr_sum: An Example

Just an example (not the common case), covering most issues (cancellations...).

Simplification for readability:

- Small blocks (may be impossible in practice: the accumulator size is a multiple of the limb size, i.e. 32 or 64).
- The numbers are ordered (in the algorithm, there are loops over all the numbers and the order does not matter).
- We will not show the accumulator, just what is computed at each step.
The New mpfr_sum: An Example [2]

MPFR_RNDN (roundTiesToEven), output precision sq = 4.

\(N_{\text{regular}} = 10 \) input numbers, each with its own precision:

\[
\begin{align*}
 x_0 & = +0.1011101000010 \cdot 2^0 & + & 1011101000010 \\
 x_1 & = -0.10001 \cdot 2^0 & - & 10001 \\
 x_2 & = -0.11000011 \cdot 2^{-2} & - & 11000011 \\
 x_3 & = -0.11101 \cdot 2^{-8} & - & 11101 \\
 x_4 & = -0.11010 \cdot 2^{-9} & - & 11010 \\
 x_5 & = +0.10101 \cdot 2^{-1000} \\
 x_6 & = +0.10001 \cdot 2^{-2000} \\
 x_7 & = -0.10001 \cdot 2^{-2000} \\
 x_8 & = -0.10000 \cdot 2^{-3000} \\
 x_9 & = +0.10000 \cdot 2^{-4000}
\end{align*}
\]
The New mpfr_sum: An Example [3]

First iteration: $[\minexp, \maxexp] = [-8, 0]$ (maxexp: chosen from the maximum exponent; minexp: chosen from various parameters, see details later).

Only 3 input numbers are concerned:

\[
\begin{align*}
\minexp &= -8 \\
+ &\ 10111010[00010] \\
- &\ 10001 \\
- &\ 110000[11]\ \\
\end{align*}
\]

\ldots000000010 (If the signs were reversed: \ldots11111110, $e = -7$)

\[
\begin{align*}
\maxexp &= -6 \\
\end{align*}
\]

During the same loop over all the input numbers, we compute the next maxexp:

Let $\mathcal{T} = \{i : Q(x_i) < \minexp\}$, where $Q(x)$ is the exponent of the last bit of x, be the indices of the inputs that have not been fully taken into account. Then

\[
\maxexp_2 = \sup_{i \in \mathcal{T}} \min(E(x_i), \minexp) = \minexp = -8.
\]
The New mpfr_sum: An Example [4]

We have computed an approximation to the sum and we have an error bound:

\[N_{\text{regular}} \cdot 2^{\text{maxexp2}}, \text{ or } 2^{\text{err}} \text{ with } \text{err} = \text{maxexp2} + \lceil \log_2(N_{\text{regular}}) \rceil. \]

The accuracy test is of the form: \(e - \text{err} \geq \text{prec} \), where \(\text{prec} \) is (currently) \(\text{sq} + 3 = 7 \). Here, \(e - \text{err} = (-6) - (-8) - \lceil \log_2(N_{\text{regular}}) \rceil \leq 0 < \text{prec} \).

→ We need at least another iteration.

Second iteration: \([\text{minexp}, \text{maxexp}] = [-17, -8]\).

...0010 \quad \leftarrow \text{previous sum (shifted in the accumulator)}
+ \quad 00010
- \quad 11
- \quad 11101
- \quad 11010

\[\ldots0000000000000 \]

Full cancellation (here with a big gap: \(\text{maxexp2} = -1000 \ll \text{minexp} \)).

→ New iteration with \(\text{maxexp} := \text{maxexp2} \) just like in the first iteration.
The New
mpfr_sum: An Example [5]

The next and last 5 input numbers:

\[\begin{align*}
 x_5 &= +0.10101 \cdot 2^{-1000} \\
 x_6 &= +0.10001 \cdot 2^{-2000} \\
 x_7 &= -0.10001 \cdot 2^{-2000} \\
 x_8 &= -0.10000 \cdot 2^{-3000} \\
 x_9 &= +0.10000 \cdot 2^{-4000}
\end{align*} \]

Third iteration: \([\text{minexp}, \text{maxexp}] = [-1008, -1000]\).

Truncated sum = \[x_5 = +0.10101 \cdot 2^{-1000}\].

\[e - \text{err} = (-1000) - (-2000) - 4 \geq 7 = \text{prec} \]

so that the truncated sum is accurate enough, but it is close to a \textit{breakpoint} (midpoint): TMD.

\textbf{To solve the TMD:}

- Do \textit{not} increase the precision (as usually done for the elementary functions), due to potentially huge gaps (here between \(x_5\) and \(x_6\)).

- Instead, determine the sign of the “error term” by computing this term to 1-bit target precision, using the same method (\(\text{prec} = 1\)).
The New mpfr_sum: An Example [6]

The input numbers used for the error term:

\begin{align*}
x_6 &= +0.10001 \cdot 2^{-2000} \\
x_7 &= -0.10001 \cdot 2^{-2000} \\
x_8 &= -0.10000 \cdot 2^{-3000} \\
x_9 &= +0.10000 \cdot 2^{-4000}
\end{align*}

First iteration of the TMD resolution: full cancellation between \(x_6\) and \(x_7\).

Second iteration of the TMD resolution: \(x_8\); accurate enough \(\rightarrow\) negative.

Correctly rounded sum = \(+0.1010 \cdot 2^{-1000}\).

Technical note: 2 cases to initiate the TMD resolution.

- Here, the gap between the breakpoint and the remaining bits is large enough. We start with a zeroed new accumulator.
- But a part of the error term may have already been computed in the lower part of the accumulator. In such a case, the new accumulator is initialized with some of these bits.
The New mpfr_sum: Accumulation (sum_raw)

To implement the steps presented in the example (before rounding)...

Function for accumulation: sum_raw

Computes a truncated sum in an accumulator such that if the exact sum is 0, return 0, otherwise satisfying $e - \text{err} \geq \text{prec}$, where e is the exponent of the truncated sum.

Calls of sum_raw:

- Main approximation: $\text{prec} = \text{sq} + 3$; zeroed accumulator in input.
- TMD resolution, if necessary: $\text{prec} = 1$ (only the sign of the result is needed); the accumulator may be zeroed or initialized with some of the lowest bits from the main approximation.
The New mpfr_sum: Accumulation (sum_raw) \[2\]

The accumulator, for the first iteration:
- \(c_q = \lceil \log_2(N_{\text{regular}}) \rceil + 1\) bits for the sign bit and to avoid overflows.
- \(s_q\) bits: output precision.
- \(d_q \geq \lceil \log_2(N_{\text{regular}}) \rceil + 2\) bits to take into account truncation errors.

Example of first iteration and after a partial cancellation (\(\rightarrow\) shift):

\[
\begin{array}{l}
\begin{array}{cccc}
\text{c}_q & \text{maxexp} & \text{sq} + \text{dq} & \text{minexp} \\
\end{array} \\
\end{array}
\]

Before shift: 00000000000000000000000000001-----------------

\(<---\) identical bits (0) \(\rightarrow\)

\(<------ 26 \text{ zeros} \ ------->

After shift: 001-----------------00000000000000000000000000

This iteration: \(\text{minexp} \leftarrow \lceil \text{maxexp2} \rceil\)

Next iteration:

\(\text{maxexp2}: \text{maximum exponent of the tails} \ (\text{MPFR_EXP_MIN if no tails}).\)
The New mpfr_sum: Correction (in short)

We now have 3 terms: the sq-bit truncated significand \(S \), a trailing term \(t \) in the accumulator such that \(0 \leq t < 1 \) ulp, and an error on the trailing term.

\[\rightarrow \text{The error } \varepsilon \text{ on } S \text{ is of the form: } -2^{-3} \text{ ulp} \leq \varepsilon < (1 + 2^{-3}) \text{ ulp}. \]

4 correction cases, depending on \(\varepsilon \) (from \(t \) and possibly a TMD resolution), the sign of the significand, the rounding bit, and the rounding mode (24 cases):

\[
corr = \begin{cases}
-1 : \text{equivalent to nextDown} \\
0 : \text{no correction} \\
+1 : \text{equivalent to nextUp} \\
+2 : \text{equivalent to 2 consecutive nextUp}
\end{cases}
\]

This is done efficiently with:

- For \(sq \geq 2 \), one-pass operation on the two's complement significand:
 - For positive results: \(x + corr \).
 - For negative results: \(\bar{x} + (1 - corr) \).

 In case of change of binade, just set the MSB to 1 and correct the exponent.

- For \(sq = 1 \), specific code (but trivial).
Tests

Tests needed to detect various possible issues:

- unnoticed error in the pen-and-paper proof (complex due to many cases);
- coding error, such as typos (without a full formal proof of MPFR);
- bug in MPFR, such as internal utility macros (this did happen: r9295);
- bug in compilers;

and to check that some bounds in the pen-and-paper proof are optimal.

Different kinds of tests, including:

- Special values (e.g., with combinations of NaN, infinities and zeroes).
- Specific tests to trigger particular cases in the implementation. Comparison with the sum computed exactly with `mpfr_add` then rounded.
- Generic random tests with cancellations (no full check, though).
- Tests with underflows and overflows.
- Check for value coverage in the TMD cases to make sure that the various combinations have occurred in the tests (this could be improved).
Timings

Comparison of 3 algorithms:

- **sum_old**: mpfr_sum from MPFR 3.1.4 (old algo).
- **sum_new**: mpfr_sum from the trunk patched for MPFR 3.1.4 (new algo).
- **sum_add**: basic sum implementation with mpfr_add (inaccurate and sensitive to the order of the inputs).

Random inputs with various sets of parameters:

- array size $n = 10^1, 10^3$ or 10^5;
- small or large input precision prec_x (the same one);
- small or large output precision prec_y;
- inputs uniformly distributed in $[-1, 1]$, or with scaling by a uniform distribution of the exponents in $[0, 10^8]$;
- partial cancellation or not.
Timings \[2\]

Inaccurate timings (up to a factor 3 between two calls), but we focus on much larger factors (theoretically unbounded).

Conclusion:

- **sum_new vs sum_add:**
 - sometimes slower, due to the accuracy requirements;
 - sometimes faster, as low level and low significant bits may be ignored.

- **sum_new vs sum_old:**
 - much faster in most cases;
 - much slower in some pathological cases: \(\text{precy} \ll \text{precx}\) and there is a cancellation, due to the fact that the reiterations are always done in a low precision (assuming that a reiteration would stop with a large probability).

Change in the future?

Sources and results are provided in the MPFR repository:

https://gforge.inria.fr/scm/viewvc.php/mpfr/misc/sum-timings/
Conclusion and Future Work

Major improvements over the old algorithm and implementation:

- Much faster in most tested cases (application dependent, though).
- Much less memory in some cases (no more crashes in simple cases).
- Fully specified, with ternary value (as usual).

Temporary memory: twice the output precision + a few limbs.

For the next MPFR release: GNU MPFR 4.0.

Possible future work:

- Determine a worst-case time complexity (could be pessimistic).
- Bad cases could be improved, but this could slow down the average case.
- What is the average case? Too much context dependent.
 → Based on real-world applications?