
Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON no 5668

SPI

Worst Cases for Correct Rounding of the
Elementary Functions in Double Precision

Vincent Lefèvre, Jean-Michel Muller November 2000

Research Report No 2000-35

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr



Worst Cases for Correct Rounding of the Elementary
Functions in Double Precision

Vincent Lefèvre, Jean-Michel Muller

November 2000

Abstract

We give here the results of a four-year search for the worst cases for correct
rounding of the major elementary functions in double precision. These results
allow the design of reasonably fast routines that will compute these functions
with correct rounding, at least in some interval, for any of the four rounding
modes specified by the IEEE-754 standard. They will also allow to easily test
libraries that are claimed to provide correctly rounded functions.

Keywords: Elementary functions, Computer arithmetic, Table Maker’s Dilemma, Correct
rounding, Floating-Point Arithmetic.

Résumé

Nous donnons dans ce rapport les résultats de quatre ans de recherche des pires
cas pour l’arrondi correct des principales fonctions élémentaires en double pré-
cision. Ces résultats permettent de construire des programmes raisonnablement
rapides calculant ces fonctions avec arrondi correct – au moins dans un do-
maine donné – pour chacun des quatre modes d’arrondi spécifiés par la norme
IEEE-754. Ils permettent également de tester des bibliothèques censées fournir
l’arrondi correct de ces fonctions.

Mots-clés: Fonctions élémentaires, arithmétique des ordinateurs, Dilemme du fabricant de
tables, Arrondi correct, Virgule flottante.



1 Introduction

In general, the result of an arithmetic operation on two floating-point numbers is not exactly rep-
resentable in the same floating-point format: it must be rounded. In a floating-point system that
follows the IEEE 754 standard [2, 3, 6], the user can choose an active rounding mode from: round-
ing towards �1, rounding towards +1, rounding towards 0 and rounding to the nearest (with a
special convention if x is exactly between two machine numbers). The IEEE-754 standard requires
that the system should behave as if the result of an arithmetic operation (+, �, �, �) were first
computed exactly, with “infinite precision”, and then rounded accordingly to the active rounding
mode. Operations that satisfy this property are called “exactly rounded” or “correctly rounded”.
There is a similar requirement for the square root.

Unfortunately, there is no such requirement for the elementary functions1 , probably because it
has been believed for many years that exact rounding of the elementary functions would be much
too expensive for double precision (for single precision, since checking 2

32 input numbers requires
a few days only, there already exist libraries that provide correct rounding. See for instance [13,
14]).

Requiring correctly rounded results (that is, the “best possible” results) in some standard would
not only improve the accuracy of computations: it would help to make numerical software more
portable. Moreover, as noticed by Agarwal et al. [1], correct rounding facilitates the preserva-
tion of useful mathematical properties such as monotonicity, symmetry and important identities.
See [12] for more details.

Before going further, let us start with definitions. We call Infinite mantissa of a nonzero real
number x the number

x

2

blog

2

jxj


:

In other words, the infinite mantissa of x is the real number x0 such that 1 � x

0

< 2 and x =

x

0

� 2

k, where k is an integer. If x is a floating-point number, then its infinite mantissa coincides
with its floating-point mantissa. If a and b belong to the same “binade” (they have the same sign
and satisfy 2

p

� jaj; jbj � 2

p+1, where p is an integer), we call their Mantissa distance the
distance between their infinite mantissas (that is, ja� bj=2

p).
Let f be an elementary function and x a floating-point number. Unless x is a very special case

– e.g., log(1) or sin(0) –, y = f(x) cannot be exactly represented. The only thing we can do
is to compute an approximation y

� to y. If we wish to provide correctly rounded functions, the
problem is to know what the accuracy of this approximation should be to make sure that rounding
y

� is equivalent to rounding y.
In other words, from y

� and the known bounds on the approximation, the only information
we have is that y belongs to some interval Y . Let us call � the rounding function. Let us call a
“breakpoint” a value z where the rounding changes (that is, if t

1

and t
2

are real numbers satisfying
t

1

< z < t

2

then �(t
1

) < �(t

2

)). For “directed” rounding modes (i.e., rounding upwards, down-
wards, or towards 0), the breakpoints are the floating-point numbers. For rounding to the nearest
mode, the breakpoints are the exact middle of two consecutive floating-point numbers.

1By elementary functions we mean the radix 2, e and 10 logarithms and exponentials, and the trigonometric and
hyperbolic functions.

1



If Y contains a breakpoint, then we cannot provide �(y): the computation must be carried
again with a larger accuracy. There are two ways of solving that problem:

� iteratively increase the accuracy of the approximation, until interval Y no longer contains
a breakpoint2 . The problem is that it is difficult to predict how many iterations will be
necessary;

� compute, in advance and once for all, the smallest relative nonzero distance3 between the
image of a floating-point number and breakpoint. This will allow to deduce the relative
accuracy with which f(x) must be approximated to make sure that rounding the approxi-
mation is equivalent to rounding the exact result.

The first solution was suggested by Ziv [15]. It has been implemented in a library, called ml4j,
available through the internet4. As a matter of fact, the last iteration uses 768 bits of precision.
There is no formal proof that this suffices (the results presented in this paper actually give the
proof for the functions and domains considered here!), but probabilistic arguments[4, 5, 12] may
be used to show that requiring a larger precision is extremely unlikely.

We decided to implement the second solution, since the only way to implement the first one is
to overestimate the accuracy that is needed in the worst cases. The basic principle of our algorithm
for searching the worst cases was outlined in [10, 11]. We now present properties that have allowed
to fasten the search, as well as the results obtained after having run our algorithms for 4 years on
several workstations, and interesting properties that can be obtained from our results.

The results we have obtained are “worst cases for the Table Maker’s Dilemma”, that is, floating
point numbers whose image is closest (for the “mantissa distance”) to a floating-point number (i.e.,
a breakpoint for a directed rounding mode) or to the exact middle of two consecutive floating-point
numbers (i.e., a breakpoint for rounding to the nearest).

For instance, the worst case for the natural logarithm in the full double precision range is
reached for

x = 1:011000101010100010000110000100110110001010

0110110110� 2

678

� 1:737429606443346566788426� 10

204 in decimal

whose logarithm is

log x =

53 bits
z }| {

111010110:0100011110011110101 � � �110001

000000000000000000 � � �000000000000000

| {z }

65 zeroes
1110:::

2This is not possible if f(x) is equal to a breakpoint. However one can show that x = 0 is the only input value for
which sin(x), 
os(x), tan(x), ar
tan(x) and e

x have a finite radix-2 representation – and the breakpoints do have finite
representations –, x = 1 is the only input value for which ln(x) has a finite representation. Concerning 2

x and 10

x,
they have a finite representation if and only if x is an integer. Also, log

2

(x) (resp. log
10

(x)) have a finite representation
if and only if x is an integer power of 2 (resp. 10). All these cases are straightforwardly handled separately, so we do
not discuss them in the sequel of the paper.

3In fact, the mantissa distance.
4 http://www.alphaWorks.ibm.com/tech/mathlibrary4java.

2



this worst case is a “difficult case” in a directed rounding mode, since it is very near a double
precision floating-point number. The two worst cases for radix-2 exponentials in the full IEEE-
754 double precision range are reached for

x

1

= 1:10111111101110111101111001000100111011011

11111000101� 2

�25

� 5:212308144076937566912625� 10

�8 in decimal

and
x

2

= 1:1110010001011001011001010010011010111111

100101001101� 2

�10

� 0:001847645567692862743694460 in decimal

whose radix-2 exponentials are

2

x

1

=

53 bits
z }| {

1:000000000000000000000000100110110 � � �101

0000000000000000000000000 � � �00000000000000

| {z }

60 zeroes
1011:::

2

x

2

=

53 bits
z }| {

1:0000000001010011111111000010111 � � �0011

0 11111111111111111 � � �1111111111111111

| {z }

59 ones
0100:::

The former is a difficult case for directed rounding modes, whereas the latter is a difficult case
for rounding to the nearest mode (since it is very close to the exact middle of two consecutive
floating-point numbers).

2 Our algorithms for finding the worst cases

2.1 Basic principles

The basic principles have been given in [11], so we only quickly describe them and focus on new
aspects. Assume we wish to look for the worst cases for function f in double precision. Let us
call test number a number that is representable in floating-point with 54 bits of mantissa (a test
number is either a double precision number or a number that lies exactly halfway between two
consecutive double precision numbers). The test numbers are the values that are breakpoints for
one of the rounding modes. Our problem of finding worst cases now reduces to the problem of
finding double precision numbers x such that f(x) is closest (for the mantissa distance) to a test
number. We proceed in two steps: we first use a fast “filtering” method that eliminates all points
whose distance to the closest breakpoint is above a given threshold. The value of the threshold
is chosen so that this filtering method does not require highly accurate computations, and so that
the number of values that remain to be checked after the filtering is so small that an accurate
computation of the value of the function at each remaining value is possible. Details on the choice
of parameters are given in [9].

In [11], we suggested to perform the filtering as follows:

� first, the domain where we look for worst cases is split into “large subdomains” where all
input values have the same exponent;

3



� each large subdomain is split into “small subdomains” that are small enough so that in each
of these subdomains, within the accuracy of the filtering, the function can be approximated
by a linear function. Hence in each small subdomain, our problem now is to find a point
on a grid that is closest to a straight line. We solve a slightly different problem: given a
“threshold” � we just try to know if there can be a point of the grid that is at distance less
than � from the straight line. The value of � is chosen so that for one given small subdomain
this event is very unlikely.

� using a variant to the Euclidean algorithm suggested by V. Lefèvre [8], we solve that prob-
lem. If we find that there can be a point of the grid at distance less than � from the straight
line, we check all points of the small subdomain.

2.2 Optimization: f and f

�1 simultaneously

Now, let us present a useful optimization of that method. Instead of finding double precision
numbers x such that f(x) is closest (for the mantissa distance) to a test number, we solve a slightly
different problem: we look for test numbers x such that f(x) is closest to a test number. This
allows to compute worst cases for f and for its inverse f�1 in one pass only (since the image f(a)
of a breakpoint a is very near a breakpoint b if and only if f�1

(b) is very near a). One could object
that by checking the images of test numbers5 instead of checking the double precision numbers
only, we double the number of points that are examined. So getting in one pass the results for two
functions (f and f

�1) seems to be a no-win no-loss operation. This is not quite true, since there
are sometimes much less values to check for one of the two functions than for the other one.

Consider as an example the radix-2 exponential and logarithm, with input domain I = [�1; 1℄

for 2x (which corresponds to input domain J = [1=2; 2℄ for log
2

(y).). The two following strategies
would lead to the same final result: they would give the worst cases for 2x in I and for log

2

(y) in
J .

1. check 2

x for every test number x in I;

2. check log

2

(y) for every test number y in J .

If we use the first strategy, we need to check all test numbers of exponent between6
�53 and

�1. Hence we have to check 106� 2

53 numbers. If we use the second strategy, we need to check
all positive test numbers of exponent equal to �1 or 0, that is, 2 � 2

53 numbers. The second
strategy is approximately 53 times faster than the first one.

If we separately check all double precision numbers in I and all double precision numbers in
J , we check 106 � 2

52

+ 2 � 2

52. The second strategy is approximately 27 times faster than this
last method.

Hence, in the considered domain, it is much better to check log

2

(y) for every test number y
in [1=2; 2℄. In other domains, the converse holds: since the exponential of a large number is an

5At the end of the test, we will suppress the values for which the input number is not a double precision number and
the output number is close to a test number that is not a double precision number. These values (statistically, 1=4 of the
obtained values) do not correspond to a worst case for any of the rounding modes and any function (f or f�1).

6For smaller numbers, there is no longer any problem of implementation: their radix-2 exponential is 1 or 1� =

1� ulp(1=2) or 1+ = 1 + ulp(1) depending on their sign and the rounding mode.

4



Table 1: Some results for small values in double precision, assuming rounding to the nearest. These results

make finding worst cases useless for negative exponents of large absolute value.

This function
can be

replaced by
when

exp(�); � � 0 1 � < 2

�53

exp(�); � � 0 1 j�j � 2

�54

sin(�); ar
sin(�) � j�j � 2

�26


os(�) 1 j�j �

p

2� 2

�27

tan(�); ar
tan(�) � j�j � 2

�27

overflow, when we want to check both functions in the domain defined by x > 1 (for 2x) or y > 2

(for log
2

(y)), we only have to consider 10 values of the exponent (hence 10 � 2

53 test numbers)
if we check 2

x for every test number in the domain, whereas we would have to consider 1022

values of the exponent (hence 1022�2

53 test numbers) if we decided to check log

2

(x) for the test
numbers in the corresponding domain.

The decision whether it is better to base our search for worst cases on the examination of f
in a given domain I or f�1 in the corresponding domain J = f(I) can be helped by examining
the value of T

f

(x) = jx� f

0

(x)=f(x)j in the considered domain. If T
f

(x) is much larger than 1,
then I will contain less test numbers than J , so it will be preferable to check f in I . If it is much
less than 1, it will be preferable to check f

�1 in J . When T

f

(x) is close to 1, a more thorough
examination is necessary. In all cases, another important point is which of the two functions is
simpler to approximate.

2.3 Optimization: special input values

For most functions, it is not necessary to perform tests for the very small arguments (i.e., argu-
ments whose exponent is negative and has large absolute value). As an example, consider the
exponential of a very small positive number �, on a floating-point format with p-bit mantissas,
assuming rounding to nearest.

If � < 2

�p then (since � is a p-bit number), � � 2

�p

� 2

�2p. Hence,

e

�

� 1 + (2

�p

� 2

�2p

) +

1

2

(2

�p

� 2

�2p

)

2

: : : < 1 + 2

�p

:

therefore exp(�) is less than 1 + (1=2)ulp(1). Thus, the correctly rounded value of exp(�) is 1. A
similar reasoning can be done for other functions and rounding modes. Some results are given in
Table 1.

2.4 Normal and denormal numbers

Our algorithm for finding worst cases assumes that input and output numbers are normalized
floating-point values. Hence, we have to separately handle the case of input denormal numbers,

5



and to check whether there exist normalized floating-point numbers x such that f(x) is so small
that it should be represented by a denormal number.

2.4.1 Can the output value be a denormal number?

A method based on the continued fraction theory, and originally designed for finding the worst
cases for range reduction was suggested by Kahan [7]. Using this method, one can find the nor-
malized floating point number that is closest to an integer multiple of �=2 different from zero.
This number is:

� � = 16367173 � 2

72

= 77291789194529019661184401408 in single precision;

� � = 6381956970095103 � 2

797 in double precision.

Therefore, the numbers A = j 
os(�)j � 1:614769798 � 10

�9 and B = j 
os(�)j �

4:687165924 � 10

�19 are lower bounds on the absolute value of the sine, cosine and tangent
of normalized single precision (for A) and double precision (for B) floating-point numbers. These
values are much larger than the smallest normalized floating-point numbers. Therefore when the
input arguments to sines, cosine and tangent are not so small that the results of Table 1 could be
used, then their values are representable as normalized floating-point numbers.

3 Implementation of the method

3.1 Overview of the implementation

The tests are implemented in three steps:

1. As said previously, the first step, which is by far the most time-consuming one, is a filter. It
consists in eliminating most of the tested arguments. This step amounts to testing if 32 (in
general) consecutive bits are all zeroes7 thus keeping one argument out of 232, in average.
This step is very slow and needs to be parallelized.

2. The second step consists in reducing the number of worst cases obtained from the first step
and grouping all the results together in a same file. This is done with a slower but more
accurate test than in the first step. As the number of arguments has been reduced, this step
is fast enough to be performed on a single machine.

3. The third step is run by the user to restrict the number of worst cases when he needs them.
Results on the inverse function are also obtained. As the number of arguments is small, this
step is very fast.

Most programs are written in Perl (text data handling, process control. . . ). Concerning the
calculations, the tests of the first step are currently written in Sparc assembly language, as they
need to be as fast as possible; and for the other calculations, we currently use Maple with an
interval arithmetic package.

7These are the bits following the first 54 bits of the mantissa, unless the exponent of the output values changes in
the tested domain.

6



3.2 The First Step

Let us give more details about the first step. The user chooses a function f , an exponent, a mantissa
size (usually 53) and some other parameters, and the first step starts as follows.8

� First, the tested interval I is split into 2

13 subintervals J
i

containing 2

40 test numbers and
the function f is approximated by polynomials P

i

of degree d
i

(� 4 to 20) on J

i

. We have
chosen to use Taylor expansions, as the error can easily be bounded and this approximation
suffices for us. For each i, we start with d

i

= 1, and successively increase d
i

until the error
due to the approximation is small enough. P

i

is expressed modulo the distance between two
consecutive test numbers, as we only need to know information about the bits following the
mantissa.

� Then, each interval J
i

is split into subintervals K

i;j

containing 2

15 arguments and P

i

is
approximated by degree-2 polynomials Q

i;j

on K
i;j

, with 64-bit precision.

� On K

i;j

: Q
i;j

is approximated by a degree-1 polynomial (by ignoring the degree-2 coeffi-
cient) and the variant of the Euclidean algorithm is used. If it fails, that is, if the obtained
distance is too small, one has to perform more tests:

– K

i;j

is split into 4 subintervals L
i;j;k

.

– For each k: the Euclidean algorithm is used on L
i;j;k

, and if it fails, the arguments are
tested the one after the other, using two 64-bit additions for each argument.

The program performs the first point (thanks to Maple and the interval arithmetic package),
generates a C/assembly source for the following points, then compiles and executes it.

The first step requires much more time than the other steps, thus it is run on several machines
(we have used around one hundred machines, in background). As the calculations in different
intervals are totally independent, there is no need for communications between different machines.
We only have a server on a particular machine to distribute intervals to each client (the program
that performs the tests).

It is more interesting to run the program on a network of workstations than on a dedicated
machines, and these workstations belong to users, who work on them. We must not disturb them.
So, the programs were written so that they can

� run with a low priority (nice),

� automatically stop after a given time,

� automatically detect when a machine is used (in particular the keyboard and the mouse) and
stop if this is the case.

8The numbers that are given here are just those that are generally chosen; the user or the program may choose other
values for particular cases.

7



4 Results: natural (radix-e) exponentials and logarithms

These functions have been among the most time-consuming during our searches, since there is no
known way of deducing the worst cases in a domain from the worst cases in another domain. And
yet, we have obtained the worst cases for all possible double precision floating-point inputs. They
are given in Tables 2 and 3. From these results we can deduce the following properties.

Property 1 (Computation of exponentials) Let y be the exponential of a double-precision num-

ber x. Let y� be an approximation to y such that the mantissa distance9 between y and y

� is

bounded by �.

� for jxj � 2

�30, if � � 2

�53�59

= 2

�112 then for any rounding mode of the IEEE-754

standard, rounding y

� is equivalent to rounding y;

� for jxj < 2

�30, if � � 2

�53�104

= 2

�157 then rounding y

� is equivalent to rounding y.

Property 2 (Computation of logarithms) Let y be the natural (radix-e) logarithm of a double-

precision number x. Let y� be an approximation to y such that the mantissa distance between y

and y

� is bounded by �. If � � 2

�53�64

= 2

�117 then for any rounding mode of the IEEE-754

standard, rounding y

� is equivalent to rounding y.

Table 2: Worst cases for the exponential function in the full range. Exponentials of numbers less than

ln(2

�1074

) are underflows (a routine should return 0 or the smallest non zero positive representable number,

depending on the rounding mode). Exponentials of numbers larger than ln(2

1024

) are overflows.

Interval worst case (binary)

[ln(2

�1074

);

�1

2

30

℄

exp(�1:11101101001100011000111011111011011000100111111010102

�27

)

= 0:11111111111111111111111111000010010110011100111000100 1 1

59

00:::

[

�1

2

30

; 0)

exp(�1:0000000000000000000000000000000000000000000000000001 � 2

�51

)

= 0:11111111111111111111111111111111111111111111111111100 0 0

100

10:::

(0;+2

�30

℄

exp(1:1111111111111111111111111111111111111111111111111111 � 2

�53

)

= 1:0000000000000000000000000000000000000000000000000000 1 1

104

01:::

[2

�30

; ln(2

1024

)℄

exp(1:0111111111111110011111111111111011100000000000100100 � 2

�32

)

= 1:0000000000000000000000000000000101111111111111101000 0 0

57

11:::

exp(1:1000000000000001011111111111111011011111111111011100 � 2

�32

)

= 1:0000000000000000000000000000000110000000000000010111 1 1

57

00:::

exp(1:1001111010011100101110111111110101100000100000001011 � 2

�31

)

= 1:0000000000000000000000000000001100111101001110010111 1 0

57

10:::

exp(110:00001111010100101111001101111010111011001111110100)

= 110101100:01010000101101000000100111001000101011101110 0 0

57

10:::

9If one prefers to think in terms of relative error, one can use the following well-known results: if the mantissa
distance between y and y

� is less than � then their relative distance jy � y

�

j=jyj is less than �. If the relative distance
between y and y

� is less than �

r

then their mantissa distance is less than 2�

r

.

8



Table 3: Worst cases for the natural (radix e) logarithm in the full range.

Interval worst case (binary)

[2

�1074

;

1

8

℄

log(1:1001010001110110111000110000010011001101011111000111 � 2

�384

)

= �100001001:10110110000011001010111101000111101100110101 1 0

60

10:::

log(1:1110101001110001110110000101110011101110000000100000 � 2

�509

)

= �101100000:00101001011010100110011010110100001011111111 1 1

60

00:::

log(1:0010011011101001110001001101001100100111100101100000 � 2

�232

)

= �10100000:101010110010110000100101111001101000010000100 0 0

60

10:::

[

1

8

; 1)

log(1:1100100011111101010000110101010000000010010000110011 � 2

�3

)

= �1:0111111111111101010011111111100010101001000111101111 1 0

54

11:::

log(0:11011101011011110110100110000110010111111000111000100)

= �1:0010100100001110101000001001111000110110010001111000 1 1

54

01::: � 2

�3

(1; 8℄

log(110:01000110101000110111111111010101000000111111110111)

= 1:1101011000110011011010101000100000000111011110101001 1 1

54

00:::

[8; 2

1024

℄

log(1:0110001010101000100001100001001101100010100110110110 � 2

678

)

= 111010110:01000111100111101011101001111100100101110001 0 0

64

11:::

5 Results: radix-2 exponentials and logarithms

5.1 Radix-2 exponentials

Using the identity 2

n+x

= 2

n

2

x allows to efficiently fasten the search. First, getting the worst
cases for x 2 [1; 2) allows to derive all worst cases for x < �1 and x > 1, since an n-mantissa-bit
number belonging to these domains is the sum of an integer and a number with at most n mantissa
bits. The worst cases for jxj < 1 were obtained through the radix-2 logarithm in (1=2; 2).

These results, given in Table 4, allow to deduce the following property.

Property 3 (Computation of radix-2 exponentials) Let y be the radix-2 exponential 2

x of a

double-precision number x. Let y� be an approximation to y such that the mantissa distance

between y and y

� is bounded by �. If � � 2

�53�59

= 2

�112 then for any rounding mode of the

IEEE-754 standard, rounding y

� is equivalent to rounding y.

5.2 Radix-2 logarithms

Concerning radix-2 logarithms, let us show that it suffices to test the input numbers greater than 1,
and whose exponent is a power of 2:

First, let us show that it suffices to test the input numbers whose exponent is a positive power
of 2 to get the worst cases for all input values greater than 1. Consider x = m � 2

p, with p � 1.
The radix-2 logarithm of x is y = p + log

2

(m), so that the infinite mantissa of y begins with
`

p

= blog

2

(p)
 bits that represent p, followed by the binary representation of log

2

(m). Let p0

be the largest power of 2 that is less than or equal to p. Since blog
2

(k)
 = blog

2

(p)
 = `

p

, we
deduce that the infinite mantissa of the radix-2 logarithm y

0 of x0 = m � 2

p

0

has the same bits
as the infinite mantissa of y after position `

p

. Hence, there is a chain of k consecutive ones (or
zeroes) after bit 54 of the infinite mantissa of y if and only if there is a chain of k consecutive

9



ones (or zeroes) after bit 54 of the infinite mantissa of y0. Therefore, from the worst cases for an
exponent equal to 2

` we easily deduce the worst cases for exponents between 2

`

+1 and 2

`+1

� 1.
For instance, in Table 5, we only give one of the worst cases: the input value has exponent 512.
All worst cases are easily deduced: they have the same mantissa, and exponents between 512 and
1023.

Now, let us show how to deduce the worst cases for numbers less than 1 from the worst cases
for numbers greater than 1. This was done as follows: consider a floating-point number x =

m�2

�p, with 1 � m < 2, and p � 1. x is less than 1. Its radix-2 logarithm is y = �p+log

2

(m).
The integer part of the absolute value of y is p � 1 and its fractional part is 1 � log

2

(m). So the
infinite mantissa of y begins with blog

2

(p� 1)
 bits that represent p� 1, followed by the bits that
represent 1 � log

2

(m). Now, consider the floating point number x0 = m � 2

p�1. x

0 is greater
than 1. Its radix-2 logarithm is y0 = (p � 1) + log

2

(m). So, the infinite mantissa of y0 begins
with blog

2

(p� 1)
 bits that represent p � 1 (that is, the same as for y), followed by the bits that
represent log

2

(m). But the bits that represent 1 � log

2

(m) are obtained by complementation10

of the bits that represent log
2

(m). Hence, there is a chain of k consecutive ones (or zeroes) after
bit 54 of the infinite mantissa of y if and only if there is a chain of k consecutive zeroes (or
ones) after bit 54 of the infinite mantissa of y0. Therefore, x is the worst case for input values
less than 1 if and only if x0 is the worst case for input values greater than 1. This is illustrated
in Table 5: the infinite mantissa of the worst case for input values greater than 1 starts with the
same bit chain (1000000000 as the mantissa of the worst case for x < 1, then the bits that follow
are complemented (1000100011111101001011111100001011001000110 0 0

55

1100::: for the case x < 1

and 0111011100000010110100000011110100110111001 1 1

55

0011::: for the case x > 1).
Using these properties, we rather quickly obtained the worst cases for the radix-2 logarithm of

all possible double precision input values: it sufficed to run our algorithm for the input numbers
of exponents 0, 1, 2, 4, 8, 16, . . . 512.

These results, given in Table 5, allow to deduce the following property.

Property 4 (Computation of radix-2 logarithms) Let y be the radix-2 logarithm log

2

(x) of a

double-precision number x. Let y� be an approximation to y such that the mantissa distance

between y and y

� is bounded by �. If � � 2

�53�55

= 2

�108 then for any rounding mode of the

IEEE-754 standard, rounding y

� is equivalent to rounding y.

6 Results: trigonometric functions

The results given in Tables 6 to 11 give the worst cases for functions sin, ar
sin, 
os, ar

os,
tan and ar
tan. For these functions, we have worst cases in some bounded domain only, because
trigonometric functions are more difficult to handle than the other functions.

And yet, it is sometimes possible to prune the search. Let us consider the arc-tangent function
of large values. The double precision number that is closest to �=2 is

� =

884279719003555

562949953421312

:

10
1 is replaced by 0 and 0 is replaced by 1.

10



Table 4: Worst cases for the radix-2 exponential function 2

x in the full range. Integer values of x are

omitted.

Interval worst case (binary)

[�1074; 0)

2 � �(�1:0010100001100011101010111010111010101111011110110010 � 2

�15

)

= 0:11111111111111100110010100011111010001100000111101111 0 0

57

1110:::

2 � �(�1:0100000101101111011011000110010001000101101011001111 � 2

�20

)

= 0:11111111111111111111001000010011001010111010011001110 1 1

57

0000:::

2 � �(�1:0000010101010110000000011100100010101011001111110001 � 2

�32

)

= 0:11111111111111111111111111111111010010101101101100001 1 1

57

0000:::

2 � �(�1:0001100001011011100011011011011011010101100000011101 � 2

�33

)

= 0:11111111111111111111111111111111100111101101010111100 0 0

57

1100:::

(0; 1024℄

2 � �(1:1011111110111011110111100100010011101101111111000101 � 2

�25

)

= 1:0000000000000000000000001001101100101100001110000101 0 0

59

1011:::

2 � �(1:1110010001011001011001010010011010111111100101001101 � 2

�10

)

= 1:0000000001010011111111000010111011000010101101010011 0 1

59

0100:::

Table 5: Worst cases for the radix-2 logarithm function log

2

(x) in the full range. Values of x that are

integer powers of 2 are omitted.

Interval worst case (binary)

(0; 1=2)

log

2

(1:0110000101010101010111110111010110001000010110110100 � 2

�513

)

= �1000000000:1000100011111101001011111100001011001000110 0 0

55

1100:::

(1=2; 2

1024

)

log

2

(1:0110000101010101010111110111010110001000010110110100 � 2

512

)

= 1000000000:0111011100000010110100000011110100110111001 1 1

55

0011:::

Assuming rounding to the nearest, the breakpoint that is immediately below � is

� =

14148475504056879

9007199254740992

:

For any real number x, if ar
tan(x) is larger than � then the correctly rounded (to the nearest)
value that should be returned when evaluating ar
tan(x) in double precision is �. We deduce
from this that for x � 5805358775541311, we should return �. A similar calculation shows that
for x between 2536144836019042 and 5805358775541310, we should return �� ulp(�).

For rounded to nearest arc-tangent, the worst case for input numbers larger than 2:25�10

12 is

4621447055448553

2048

= 2256565945043:23876953125

whose arc-tangent is

53 bits
z }| {

1:1001001000011111101101010100010001000010010101001100

1 0

45

111011 : : :

Property 5 (Computation of sines) Let y be the sine of a double-precision number x satisfying

1=32 � jxj � 2. Let y� be an approximation to y such that the mantissa distance between y

11



and y

� is bounded by �. If � � 2

�53�65

= 2

�118 then for any rounding mode of the IEEE-754

standard, rounding y

� is equivalent to rounding y.

Property 6 (Computation of arc-sines) Let y be the arc-sine of a double-precision number x

satisfying sin(1=32) � jxj � 1. Let y� be an approximation to y such that the mantissa distance

between y and y

� is bounded by �. If � � 2

�53�64

= 2

�117 then for any rounding mode of the

IEEE-754 standard, rounding y

� is equivalent to rounding y.

Similar properties are deduced for the other trigonometric functions: � � 2

�108 for cosines be-
tween 1=64 and 12867=8192 = 1:5706 : : :, � � 2

�115 for arc-cosine between 
os(12867=8192) �

0:0001176 and 
os(1) � 0:54; � � 2

�110 for tangent between 1=32 and ar
tan(2); and � � 2

�108

for arc-tangent between tan(1=32) and 2.

Table 6: Worst cases for the sine function in the range [1=32; 2℄.

Interval worst case (binary)

[

1

32

; 1℄

sin 0:011111111001110110011101110011100111010000111101101101

= 0:011110100110010101000001110011000011000100011010010101 1 1

65

00:::

[1; 2℄

sin 1:1001001000011111101101010100010001000010110100011000

= 0:11111111111111111111111111111111111111111111111111111 1 1

54

01:::

Table 7: Worst cases for the arc-sine function in the range [sin(1=32) = 0:0312449 : : : ; 1℄.

Interval worst case (binary)

[sin

1

32

; 1℄

ar
sin 0:011110100110010101000001110011000011000100011010010110

= 0:011111111001110110011101110011100111010000111101101101 0 0

64

10:::

Table 8: Worst cases for the cosine function in the range [1=64; 12867=8192℄. 12867=8192 is slightly less

than �=2.

Interval worst case (binary)

[

1

64

; 1℄


os 1:1001011111001100110100111101001011000100001110001111 � 2

�6

= 0:11111111111010111011001101011101010000111000010101000 1 1

55

01:::

[1;

12867

8192

℄


os 1:0110101110001010011000100111001111010111110000100001

= 1:0011001101111111110001011011000001110010110001010010 1 0

54

10::: � 2

�3

Conclusion

The worst cases we have obtained will allow the design of reasonably fast routines for evaluating
most common mathematical functions with correct rounding (at least in some intervals) in the
four rounding modes specified by the IEEE-754 standard. We are extending the domains for the

12



Table 9: Worst cases for the arc-cosine function in the range [
os(12867=8192); 
os(1)℄ �

[0:0001176; 0:540℄.

Interval worst case (binary)

[
os

�

12867

8192

�

; 
os(1)℄

ar

os 1:1111110101110011011110111110100100010100010101111000 � 2

�11

= 1:1001000111100000000001101101010000011101100011011000 1 1

62

00:::

Table 10: Worst cases for the tangent function in the range [1=32; ar
tan(2)℄, with ar
tan(2) � 1:107148.

Interval worst case (binary)

[

1

32

;

1

16

℄

tan(1:0101000001001000011010110010111110000111000000010100 � 2

�5

)

= 1:0101000001111000110011101011111111111001110001110010 1 0

57

10::: � 2

�5

[

1

16

; tan

�1

1

2

℄

tan(1:1010001100111111001100101010110001011100111010110101 � 2

�3

)

= 1:1010100100110011111111100001011101101011001101110101 0 0

55

10::: � 2

�3

[tan

�1
1

2

; tan

�1

2℄

tan(0:10100011010101100001101110010001001000011010100110110)

= 0:10111101110100100100111110111001110011000001010011110 1 1

54

00:::

functions for which we have not yet obtained the worst cases in the full range. More examples
can be obtained through the URL http://www.ens-lyon.fr/'jmmuller/TMD.html.
These “worst cases” will also be good test cases for checking whether a library provides correct
rounding or not.

References

[1] R. C. Agarwal, J. C. Cooley, F. G. Gustavson, J. B. Shearer, G. Slishman, and B. Tucker-
man. New scalar and vector elementary functions for the IBM system/370. IBM Journal of

Research and Development, 30(2):126–144, March 1986.

[2] American National Standards Institute and Institute of Electrical and Electronic Engineers.
IEEE standard for binary floating-point arithmetic. ANSI/IEEE Standard, Std 754-1985, New
York, 1985.

Table 11: Worst cases for the arc-tangent function in the range [tan(1=32); 2℄, with tan(1=32) �

0:0312601.

Interval worst case (binary)

[tan

�

1

32

�

;

1

2

℄

ar
tan(1:1010100100110011111111100001011101101011001101110101 � 2

�3

)

= 1:1010001100111111001100101010110001011100111010110100 1 1

55

01::: � 2

�3

[

1

2

; 2℄

ar
tan(0:10111101110100100100111110111001110011000001010011111)

= 0:10100011010101100001101110010001001000011010100110110 0 0

55

11:::

13



[3] J. T. Coonen. An implementation guide to a proposed standard for floating-point arithmetic.
Computer, January 1980.

[4] C. B. Dunham. Feasibility of “perfect” function evaluation. SIGNUM Newsletter, 25(4):25–
26, October 1990.

[5] S. Gal and B. Bachelis. An accurate elementary mathematical library for the IEEE floating
point standard. ACM Transactions on Mathematical Software, 17(1):26–45, March 1991.

[6] D. Goldberg. What every computer scientist should know about floating-point arithmetic.
ACM Computing Surveys, 23(1):5–47, March 1991.

[7] W. Kahan. Minimizing q*m-n, text accessible electronically at
http://http.cs.berkeley.edu/�wkahan/. At the beginning of the file "nearpi.c", 1983.

[8] V. Lefèvre. Developments in Reliable Computing, chapter An Algorithm That Computes a
Lower Bound on the Distance Between a Segment and Z2, pages 203–212. Kluwer, Dor-
drecht, Netherlands, 1999.

[9] V. Lefèvre. Moyens Arithmétiques Pour un Calcul Fiable. PhD thesis, École Normale
Supérieure de Lyon, Lyon, France, 2000.

[10] V. Lefèvre, J. M. Muller, and A. Tisserand. Towards correctly rounded transcendentals. In
Proceedings of the 13th IEEE Symposium on Computer Arithmetic, Asilomar, USA, 1997.
IEEE Computer Society Press, Los Alamitos, CA.

[11] V. Lefèvre, J.M. Muller, and A. Tisserand. Toward correctly rounded transcendentals. IEEE

Transactions on Computers, 47(11):1235–1243, November 1998.

[12] J.M. Muller. Elementary Functions, Algorithms and Implementation. Birkhauser, Boston,
1997.

[13] M. Schulte and E. E. Swartzlander. Exact rounding of certain elementary functions. In E. E.
Swartzlander, M. J. Irwin, and G. Jullien, editors, Proceedings of the 11th IEEE Symposium

on Computer Arithmetic, pages 138–145, Windsor, Canada, June 1993. IEEE Computer So-
ciety Press, Los Alamitos, CA.

[14] M. J. Schulte and E. E. Swartzlander. Hardware designs for exactly rounded elementary
functions. IEEE Transactions on Computers, 43(8):964–973, August 1994.

[15] A. Ziv. Fast evaluation of elementary mathematical functions with correctly rounded last bit.
ACM Transactions on Mathematical Software, 17(3):410–423, September 1991.

14


