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Abstract: We propose a new algorithm to find worst cases for correct rounding of an analytic
function. We first reduce this problem to the real small value problem — i.e. for polynomials with
real coefficients. Then we show that this second problem can be solved efficiently, by extending
Coppersmith’s work on the integer small value problem — for polynomials with integer coefficients
— using lattice reduction [4, 5, 6].

For floating-point numbers w1th a mantissa less than N, and a polynomial approximation of

degree d, our algorithm finds all worst cases at distance < N 2d+1 2ﬂl+1 from a machine number in time

O(NMHJr ). For d = 2, this improves on the O(N?/3%%) complexity from Lefevre’s algorithm
[12, 13] to O(N?3/5*%). We exhibit some new worst cases found using our algorithm, for double-
extended and quadruple precision. For larger d, our algorithm can be used to check that there exist
no worst cases at distance < N~* in time O(N%Jro(%)).
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Pires cas et réduction des réseaux

Résumé : Nous proposons un nouvel algorithme trouvant les pires cas pour l'arrondi d’une
fonction mathématique, en calcul & virgule flottante. Dans un premier temps, nous réduisons ce
probleme & la recherche d’une petite valeur d’un polynéme a coefficients réels. Nous montrons
ensuite que ce second probleme peut étre résolu efficacement, en étendant le travail de Copper-
smith — utilisant la réduction des réseaux — sur la recherche de petites valeurs d’un polynome &
coefficients entiers [4, 5, 6].

Pour des nombres ﬂottants avec une mantisse bornée par N, et une approx1mat10n polynomiale

de degré d, notre algorlthme trouve tous les pires cas a distance < N 2d+T a1 d’un nombre machine

en temps O(N2d+1 st “). Pour d = 2, cela améliore la complexité de I'algorithme de Lefevre [12, 13]
— O(N?/3+%) — avec une complexité de O(N3/5+¢). Nous exhibons de nouveaux pires cas trouvés
avec notre algorithme, pour la double précision étendue et la quadruple précision. Pour un plus
grand degré d, notre algorithme peut montrer qu’il n’existe pas de pire cas a distance < N=* en
temps O(N%J“O(%)).

Mots-clés : arrondi exact, dilemme du fabricant de table, pire cas, norme IEEE-754, réduction
des réseaux, théoreme de Coppersmith
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1. INTRODUCTION

The IEEE-754 standard for binary floating-point arithmetic [9], approved in 1985 by the IEEE
Standards Board and the American National Standards Institute, requires that all four basic arith-
metic operations (4, —, X, +) and the square root are correctly rounded. For a given function,
floating-point inputs for which it is difficult to guarantee correct rounding, called worst cases, are
numbers for which the exact result — as computed in infinite precision — is near a machine num-
ber, or near the middle of two consecutive machine numbers. This is the famous “Table Maker’s
Dilemma” problem (TMD for short). Several authors, in particular Tordache and Matula [10],
Lang and Muller [11], have shown that for the class of algebraic functions, such worst cases cannot
be too near from a machine number or the middle of two consecutive machine numbers. Such
bounds enable one to design some efficient algorithms that guarantee correct rounding for algebraic
functions.

However, for non-algebraic functions, number theory bounds are not sharp enough, which makes
correct rounding harder to implement. This is probably the reason why the IEEE-754 standard
does not require correct rounding for those functions. Muller and other authors proposed in [16] to
introduce different levels of quality for transcendental functions. This proposal was presented by
Markstein at the May 2002 meeting of the IEEE-754 revision group, but the conclusion was that
“we’re not yet ready to standardize”.

Systematic work on the TMD was done by Lefevre and Muller [13], who published worst cases
for many elementary functions in double precision (N = 253), over the full range for some functions.
Alas, their approach is too expensive to deal with the quadruple precision, which is included in the
current revision of the IEEE 754 standard. Thus currently the only possible approaches for higher
precisions are either to guess a reasonable bound on the precision required for the hardest to round
cases and to write a library computing up to that precision, or to write a generic multiple-precision
library. For instance, Ziv’s MathLib library does the former, where the guessed bound is 768 bits
for double precision [17].

Having an efficient algorithm to find the hardest to round cases, for a given function and a given
floating-point format, would help to replace guessed bounds — which are usually overestimated —
by sharper and rigorous bounds. It would thus enable one to design very efficient libraries with
correct rounding. Then there would be no good reason any more to exclude those functions from
the correct rounding requirements of the IEEE-754 standard.

Exhaustive search methods consist in finding the hardest to round cases of the given function
in the given range. They give the best possible bound, but are very time-consuming. Moreover, a
search for a given precision gives little knowledge for another precision.

We propose here a new algorithm belonging to that class. It naturally extends the first algorithm
proposed by Lefévre [12], and is based on Coppersmith’s ideas.!

Previous related work was done by Elkies, who gives in [7] a new algorithm using lattice reduction
to find all rational points of small height near a plane curve; for example his record:

5853886516781223% — 447884928428402042307918% = 1641843

corresponds to a worst case of the function 2%/2 for a 53-bit input and a 79-bit output; his other
example

2220422932% — 283059965 — 2218888517% = 30
corresponds to a worst case of the function (z* +1?)/3 in 32-bit arithmetic. More recently Gonnet
[8] also used lattice reduction to find worst cases, however his approach seems equivalent to Lefevre’s
algorithm.

1To our best knowledge, this is the first non-cryptographic application of Coppersmith’s work.
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4 D. Stehlé, V. Lefévre, P. Zimmermann
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FI1GURE 1. A function graph and the grid of machine numbers. Worst cases corre-
spond to grid points with a small vertical distance to the curve.

Our paper is organized as follows: Section 2 explains in mathematical terms the problem we
want to solve, recalls Lefevre’s algorithm and analyzes its complexity. Section 3 describes our new
algorithm, after a short survey on lattice reduction and Coppersmith’s work, which we heavily
use. Section 4 presents some new worst cases found with our algorithm for the 2% function, in
double-extended precision and quadruple precision. Section 5 discusses some ideas for possible
improvements and open questions.

2. PRELIMINARIES

2.1. Definitions and Notations. We assume we work here with floating-point numbers with a
mantissa of n bits. Let N = 2"; for instance, N = 2°3 corresponds to double precision, N = 264
corresponds to double-extended precision, and N = 2'3 corresponds to quadruple precision. A
worst case for a function f is a floating-point number z such that f(z) has m identical bits after
the round bit. If those m bits equal (resp. differ from) the round bit, z is a worst case for directed
rounding (resp. rounding to nearest).

For sake of simplicity, we consider here directed rounding only (towards —oo, towards +oo,
towards zero), since a worst case for rounding to nearest at precision n corresponds to a worst case
at precision n + 1 for directed rounding. To find worst cases for directed rounding, we throw away
the first n significant bits of the result mantissa. Then a worst case of length m corresponds to
|N f(z) mod 1| < 27™, where z mod 1 := z — | z| denotes the “centered” fractional part (see Fig. 1).

We also consider that both argument = and result y = f(z) are normalized, i.e. 3 <z, f(z) < 1.
This is easy to achieve by multiplying = or f(z) by some fixed powers of 2, unless the exponent of
f(x) varies a lot in the considered range. This excludes the case of numerically irregular functions
like sinz for large z. Given a polynomial approximation P(t) to N f (%) (for example a Taylor
expansion), the TMD can be reduced to the following problem.

REAL SMALL VALUE PROBLEM (REAL SVALP): Given positive integers M and T', and a polyno-
mial P with real coefficients, find all integers |t| < T such that

(1) |P(t) mod 1] < %

REMARK 1: The mantissa bound N does not appear explicitly in the real SValP, however the

polynomial P(t) depends on N, and so does the error made in the polynomial approximation.

REMARK 2: If the fractional bits of the function behave randomly, we can expect =~ % worst cases.

Therefore we may assume T < M if we want only few worst cases.?

2The notation z < y is equivalent to z = O(y).

INRIA
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2.2. Lefevre’s Algorithm. Lefevre’s algorithm [12, 13] works as follows. One considers a linear
approximation to the function f on small intervals. Those approximations are computed from
higher order polynomial approximations on larger intervals, using an efficient scheme based on the
“table of differences” method. On each small interval, worst cases are found using a modified version
of the Euclidean algorithm, which gives a lower bound for |N f(+) mod 1| on that interval.
Assume f(z) = ag + a1z + asz? + O(2?®) around z = 0. Since we neglect the terms of order
two or more in N f(£), we must have |a2TWZ| < - so that the error coming from the polynomial

approximation does not exceed the distance ﬁ Together with T' < M, it follows T" < N 173,
Therefore the complexity of Lefevre’s algorithm is O(N 2/3+e ), since we have to consider % ~ N2/3
small intervals to check a complete mantissa range.

In practice Lefévre’s algorithm is expensive but feasible for the double precision (N2/3 ~ 4.1010),
near from the limits of the current processors for double-extended precision (N 23 7. 10'2), and

out of reach for quadruple precision (N%/? ~ 5 - 10%2).

3. A NEw ALGORITHM USING LATTICE REDUCTION

In that section, we first state some basic facts about lattices — we refer to [15] for an introduction
to that subject — and we explain Coppersmith’s theorem, on which our algorithm is based. Then
we introduce the algorithm, we prove its correctness and we analyze its complexity.

3.1. Some Basic Facts in Lattice Reduction Theory. A lattice L is a discrete subgroup of
R™, or equivalently the set of all integral combinations of £ < n linearly independent vectors over
R, that is:

l
L= {Z nlbl|nl € Z}.
i=1

We define the determinant, also called the volume, of the lattice L as:

l
det(L) = [ TIIb;1l.
1=1

where |.|| is the Euclidean norm and [b], ..., bj] is the Gram-Schmidt orthogonalization of [by, ..., by].
The basis [b1, ..., by] of L is not unique and on an algorithmic point of view, only bases which consist
of small linearly independent vectors of L are of interest. Those so-called reduced bases always exist
and can be computed in polynomial time with the well-known LLL algorithm [14].

Theorem 1. Given a basis [by, ..., by] of a lattice L C 7™, the LLL algorithm provides in polynomial
time in £ and in the bit-lengths of the ||b;||’s, a basis {v, ..., v¢} satisfying:
L. [Jor]| <25 det(L)7;
1
2. ||| < 2% det(L)7 1.

(This is not the strongest result, but is sufficient for our needs.)

Coppersmith (see [4, 5], or [6] for a better description) found recently an important consequence
of this theorem: one can compute the small roots of a multivariate polynomial modulo an integer N
in polynomial time. His method proved very powerful to forge cryptographic schemes (see [2, 3, 4]
for example). Our new algorithm intensely uses that technique.

3.2. The Integer Small Value Problem. The problem that will prove interesting in our case
is the following: given a univariate polynomial P € Z[z] of degree d, find on which small integer
entries it has small values modulo a large integer N. Equivalently, we are looking for the small
integer roots of the bivariate polynomial:

Q(z,y) = P(z) +y (mod N).

RR n°® 4586



6 D. Stehlé, V. Lefévre, P. Zimmermann

We now explain how Coppersmith’s technique helps solving it. First let « be a positive integer
(that will grow later to infinity), and assume (z,yg) is a root of @@ modulo N. We consider the
family of polynomials Q; j(z,y) = 2'Q’(z,y)N® 7 with 0 < i + dj < da. Then (z9,yp) is a root
modulo N of each ; ;, whence of each linear combination of them.

Our goal is to build two integer combinations of those polynomials, vy (z,y) and vy(z,y), which
take small values — i.e. less than N® — for small z and y, more precisely |z| < X and |y| <Y for
fixed bounds X and Y. Thus, if (z9, o) is a small root of v; and vy modulo N, (z,yp) is also a
root of v; and vy over Z, and (zg,yo) will be found by looking at the integer roots of the resultant
Resy (vi,v2) € Z[z].

It remains to explain how to find those two polynomials. For this we consider the lattice of

dimension w generated by the vectors associated with the @Q; ;(Xz,Yy): the vector asso-

ciated with a bivariate polynomial Zi’ j ai,jxiyj has its z’y’ coordinate equal to a; ;X 'yJ. We give
here the shape of the matrix we get in the case d =3 and o = 2.

0/0 N? ,

1/0 N=X

2/0 N2x2

3/0 N2x3
4/0 N2x*

5/0 N2X5

6?0 N2x6
0/1 _ _ _
1/1 _ _
2/1 _

NY
NXY

— NX2%y

— — NX3Yy

— — — — — — y2

w
~
=

[

Since we get a triangular matrix, the calculation of the determinant is obvious:
det(L) = Nia+o(e?) .X%a3+0(a3) .y &at+o(a?)

Therefore, by Theorem 1, where here the lattice dimension satisfies £ ~ %oﬁ, the LLL algorithm

gives us two vectors vy and vo of norm less than N3atol@ . xga+o(a)  yzato(@) when o grows to
infinity. Those vectors vi and vs correspond to two polynomials vy (z,y) and ve(z,y). Moreover if

2| < X and |y| <Y, Jog(z,9)| < 5, ol B < € max|o!)] < C- ||vy]| for a certain constant

C. Thus, to get |vg(z,y)| < N¢, it is sufficient that:

C. N%a—l—o(a) _X%a-i-o(a) .Y%a-i—o(a) < N¢,

which asymptotically gives the bound XY <« N.

Using Coppersmith’s technique, one can thus solve the integer SValP in polynomial time as long
as XY < N'7¢ In fact, this is not completely true because we used an argument we cannot prove:
we assumed that Res,(vi,v2) # 0. This heuristic has been made very often in cryptography (see
(2, 3, 4]).

3.3. The SLZ Algorithm. Substituting N by 1, X by T, and Y by 1/M in the integer SValP,
we find exactly the real SValP. The only difficulty is that P(z) has real coefficients, and the LLL
algorithm does not work well with real input. The following algorithm overcomes that difficulty
(we present here a complete algorithm to solve the TMD, but the sub-algorithm consisting of steps
3 to 11 may be of interest to solve the real SValP itself).

Input: a function f, positive integers N, T, M, d, «

Output: all worst cases at distance < 1/M for f(%) for |t| < T

1. Let P(t) the Taylor expansion of Nf(%) up to order d, and n = w

2. Compute a bound ¢ such that |P(t) — N f(%)| < for [t| < T

INRIA
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3. Let M' = |7, C = (d+ )M, and® P'(z) = & |CP(Tw)]

4. Let {e1,...,e,} « {xiy/} for 0 < i +dj < da
5. Let {g1,...,9n} < {C(T2) (P'(z) + )7} for 0 <i+dj < da
6. Form the n x n matrix L where L;,; is the coefficient of the monomial e, in g;

7. V « C~“LatticeReduce(L)
8. Let v, v the two smallest vectors from V', and p; (z,y) and ps(z,y)
the corresponding polynomials

9. if 3z, y, € [-1,1] with |p1(z,y)| > 1 or |p2(z,y)| > 1, then return(FAIL)
10. p(t) + Resy(pl (t/T,y),p=(t/T,y)); if p(t) =0 then return(FAIL)

11. for each to in IntegerRoots(p(t),[-T,T]) do

12.  if |[Nf(%) mod 1| < 1/M then output .

(Note that the matrix L has integer entries since C'P'(z) has integer coefficients, and M’ divides
C.)

3.4. Correctness of the Algorithm.

Theorem 2. In case algorithm SLZ does not return FAIL, it behaves correctly, i.e. it prints exactly
all integers t € [=T,T] such that |N f(4) mod 1| < 1/M.

Proof. Because of the final check in step 12, we only have to check that no worst case is missed
Suppose there is g € [T, T] with [N f(%2) mod 1| < 1/M. Then |P(t0) mod 1| < 1/M +¢ < 515,
and |P'(z) — P(Tz)| < d;él for |z| < 1, thus |P'(to/T) mod 1| < oip + S < 1/M’. Whence
P'(t/T) + u = 0 mod 1 has a root (ty,up) with |ug| < 1/M’. Since pi(t,y) and pa(t,y) are linear
combinations of P'(t/T)+ 5% and its powers, then (f9, M'ug) is a common root of p; (,y) and pa(t, y)
modulo 1, and even over the reals since |p1|, [p2| < 1. Thus ¢, is an integer root of Res, (p1, p2), and

will be found at line 11. O
3.5. Choice of Parameters and Complexity Analysis.

3.5.1. Coppersmith’s Bound. Because of the use of the Coppersmith’s technique in our algorithm,
to insure the algorithm does not return FAIL at step 9, the bound “X9Y « N” has to be verified.
In our case, X corresponds to T, Y to 1/M' and N to 1, so we get:

T < Mi.

3.5.2. Choice of the Degree d With Respect to T. Let (a;); the Taylor coefficients of f. Since we
neglect Taylor coefficients of degree d + 1 and greater, the error made in the approximation to
Nf(%) by P(t) is & ag41T*"' N~ Since we are looking for worst cases with |P(¢) mod 1| < 1/M,
we want T N~? < 1/M, i.e. MTH! < N4

3.5.3. Complezity Analysis. Thus we have two bounds for T: the first one T' <« M/¢ comes from
the Coppersmith’s method, the second one T9!' <« N%/M comes from the accuracy of the Taylor
expansion. Therefore for M <« N2d+1 2d+1 , Coppersmith’s bound wins and implies T' < M /¢, whereas
for M >> N 2d+1 , Lagrange’s bound gives T%! <« N¢/M. The largest bound for T is obtained for

M ~ N2d+1, with T <« N2d+1. For d = 1, we find the constraint T <« N'/3 from Lefévre’s method;
for d = 2, this gives T <« N2/5 with M ~ N*/°; for d = 3, this gives T' <« N3/7 with M ~ N9/7.
With M ~ N*, we get a best possible interval length T ~ N3—sitoi),

3The notation |C'P(Tz)] means that we round to the nearest integer each coefficient of CP(Tz).

RR n°® 4586
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| N M T d « est time
double  2°% 228 215 1 1 560 days
253 253 9200 9 9 120 days
precision  2%% 2106 925 4 9 45 days
double 264 232 219 1 1 140 years
extended 204 264 224 92 9 43 years
precision 264 2128 230 4 9 9 years
quadruple 2'3 270 235 1 1 1600 Gyears
213 9l3 943 9 9 94 Gyears
precision 213 2226 253 4 2 1.6 Gyears

FIGURE 2. Best experimental parameters for double, double-extended and quadru-
ple precision, and estimated time for an exponent range of N/2 values.

3.5.4. Working Precision. In step 1, we can use floating-point coefficients in the Taylor expansion
P(t) instead of symbolic coefficients, as long as it introduces no error in step 3 while computing
P'(z). With d-bit floating-point coefficients, a necessary condition is that 2¢ > CN to ensure the
constant coefficient from P’(z) is correct.

REMARK 3: When searching worst cases with M < N, degree 2 is enough. Indeed, N'=9T% «
N'=4M since T < M (Coppersmith’s bound), and for d > 3, N'=9T9 « N?74 < 1/N < 1/M.
Thus all Taylor terms of degree > 3 give a negligible contribution to N f (%), and the largest value
of T is N2/° giving a complexity of N3/® to search a whole range of N /2 values. More generally,

2k
for M < N*, degree 2k is enough, giving a complexity of N T,
4. EXPERIMENTAL RESULTS

We have implemented algorithm SLZ in the Pari/GP system (version 2.2.4-alpha) [1] and ex-
perimented it on a Athlon XP 1600+ under Linux. We have chosen the 2 function since it is
the easiest one, with only one exponent range to study. Fig. 2 shows for each target precision
(double, double-extended, quadruple), and for M ~ N and M = N2, the best parameters (T, d,
and «) for our method, together with the estimated time to check the whole exponent range, i.e.
N/2 floating-point numbers. For each precision, the first row gives the best parameters for the
d = a = 1 case, which is what Gonnet considers in [8]; comparing that first row to the following
ones shows the speedup obtained. For M ~ N, the speedup increases from 3 to 17, whence is
not dramatic. However for M ~ N2, we get a speedup of about 1000 in quadruple precision with
respect to the naive method (d = a = 1), with (d,a) = (4,2).  Fig. 3 shows a few worst cases
found using algorithm SLZ for double-extended and quadruple precision. These experiments tend
to show that with a carefully tuned implementation, and several computers running a few months,
solving the TMD for the double-extended precision is nowadays feasible.

5. POSSIBLE IMPROVEMENTS AND OPEN QUESTIONS

We have presented a new algorithm, based on lattice reduction, to search for worst cases for
correct rounding of analytic functions. The first experimental results show that algorithm SLZ
is quite efficient, especially to detect worst cases at distance much less than 27", where n is the
target precision. However the efficiency largely depends on the function considered, like in Lefevre’s
algorithm.

Several open questions remain. Does this approach extend like in the modular case ([4]) to
functions of two variables like z¥ or arctan %?

Our algorithm is complementary to that of Elkies [7], which works well when M < N (in our
notation), i.e. when we expect many worst cases, whereas our algorithm is more efficient when

INRIA



Worst Cases and Lattice Reduction 9

N to N2-1/2+0/N mod 1
264 586071771766963 0.11%7001111...
64 594068190588573 0.00*8100010...
64 891586182147388 0.115°001000...
64 9014384889202147 0.01%3010011...
264 9602866023852631 0.00°*111001...

2113 1119374922072865495 0.0 153000000...
2113 8923960372306650064 0.0054101011...
2113 43616445401128570224 0.015%011110...
2113 53608038600996804036 0.0 167000001...

FIGURE 3. Some worst cases found for the 2% function in double-extended and
quadruple precision.

3/2

M > N, i.e. when we expect only few worst cases, or none. However, in the case of f(z) = z°/°,
related to Hall’s conjecture, Elkies proposes a special-purpose algorithm to find all worst cases at
distance < 1/N in O(N'/?%¢). Does this algorithm generalize to other algebraic functions?

What is the best complexity one may obtain for the TMD using Coppersmith’s method? Cop-
persmith gives in [6] some arguments giving evidence that T < M 1/d might be the best possible
bound for finding in polynomial time the roots of general modular univariate polynomials of degree
d. Could one improve the technique by considering the shape of our polynomials, like is done by
Boneh and Durfee [2] for the small inverse problem with |k| < N%-292?

[1]

[10]
[11]
[12]

[13]
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