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Abstra
t: We propose a new algorithm to �nd worst 
ases for 
orre
t rounding of an analyti


fun
tion. We �rst redu
e this problem to the real small value problem | i.e. for polynomials with

real 
oeÆ
ients. Then we show that this se
ond problem 
an be solved eÆ
iently, by extending

Coppersmith's work on the integer small value problem | for polynomials with integer 
oeÆ
ients

| using latti
e redu
tion [4, 5, 6℄.

For 
oating-point numbers with a mantissa less than N , and a polynomial approximation of

degree d, our algorithm �nds all worst 
ases at distan
e < N

�d

2

2d+1

from a ma
hine number in time

O(N

d+1

2d+1

+"

). For d = 2, this improves on the O(N

2=3+"

) 
omplexity from Lef�evre's algorithm

[12, 13℄ to O(N

3=5+"

). We exhibit some new worst 
ases found using our algorithm, for double-

extended and quadruple pre
ision. For larger d, our algorithm 
an be used to 
he
k that there exist

no worst 
ases at distan
e < N

�k

in time O(N

1

2

+O(

1

k

)

).
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Pires 
as et r�edu
tion des r�eseaux

R�esum�e : Nous proposons un nouvel algorithme trouvant les pires 
as pour l'arrondi d'une

fon
tion math�ematique, en 
al
ul �a virgule 
ottante. Dans un premier temps, nous r�eduisons 
e

probl�eme �a la re
her
he d'une petite valeur d'un polynôme �a 
oeÆ
ients r�eels. Nous montrons

ensuite que 
e se
ond probl�eme peut être r�esolu eÆ
a
ement, en �etendant le travail de Copper-

smith | utilisant la r�edu
tion des r�eseaux | sur la re
her
he de petites valeurs d'un polynôme �a


oeÆ
ients entiers [4, 5, 6℄.

Pour des nombres 
ottants ave
 une mantisse born�ee par N , et une approximation polynomiale

de degr�e d, notre algorithme trouve tous les pires 
as �a distan
e < N

�d

2

2d+1

d'un nombre ma
hine

en temps O(N

d+1

2d+1

+"

). Pour d = 2, 
ela am�eliore la 
omplexit�e de l'algorithme de Lef�evre [12, 13℄

| O(N

2=3+"

) | ave
 une 
omplexit�e de O(N

3=5+"

). Nous exhibons de nouveaux pires 
as trouv�es

ave
 notre algorithme, pour la double pr�e
ision �etendue et la quadruple pr�e
ision. Pour un plus

grand degr�e d, notre algorithme peut montrer qu'il n'existe pas de pire 
as �a distan
e < N

�k

en

temps O(N

1

2

+O(

1

k

)

).

Mots-
l�es : arrondi exa
t, dilemme du fabri
ant de table, pire 
as, norme IEEE-754, r�edu
tion

des r�eseaux, th�eor�eme de Coppersmith



Worst Cases and Latti
e Redu
tion 3

1. Introdu
tion

The IEEE-754 standard for binary 
oating-point arithmeti
 [9℄, approved in 1985 by the IEEE

Standards Board and the Ameri
an National Standards Institute, requires that all four basi
 arith-

meti
 operations (+, �, �, �) and the square root are 
orre
tly rounded. For a given fun
tion,


oating-point inputs for whi
h it is diÆ
ult to guarantee 
orre
t rounding, 
alled worst 
ases, are

numbers for whi
h the exa
t result | as 
omputed in in�nite pre
ision | is near a ma
hine num-

ber, or near the middle of two 
onse
utive ma
hine numbers. This is the famous \Table Maker's

Dilemma" problem (TMD for short). Several authors, in parti
ular Iorda
he and Matula [10℄,

Lang and Muller [11℄, have shown that for the 
lass of algebrai
 fun
tions, su
h worst 
ases 
annot

be too near from a ma
hine number or the middle of two 
onse
utive ma
hine numbers. Su
h

bounds enable one to design some eÆ
ient algorithms that guarantee 
orre
t rounding for algebrai


fun
tions.

However, for non-algebrai
 fun
tions, number theory bounds are not sharp enough, whi
h makes


orre
t rounding harder to implement. This is probably the reason why the IEEE-754 standard

does not require 
orre
t rounding for those fun
tions. Muller and other authors proposed in [16℄ to

introdu
e di�erent levels of quality for trans
endental fun
tions. This proposal was presented by

Markstein at the May 2002 meeting of the IEEE-754 revision group, but the 
on
lusion was that

\we're not yet ready to standardize".

Systemati
 work on the TMD was done by Lef�evre and Muller [13℄, who published worst 
ases

for many elementary fun
tions in double pre
ision (N = 2

53

), over the full range for some fun
tions.

Alas, their approa
h is too expensive to deal with the quadruple pre
ision, whi
h is in
luded in the


urrent revision of the IEEE 754 standard. Thus 
urrently the only possible approa
hes for higher

pre
isions are either to guess a reasonable bound on the pre
ision required for the hardest to round


ases and to write a library 
omputing up to that pre
ision, or to write a generi
 multiple-pre
ision

library. For instan
e, Ziv's MathLib library does the former, where the guessed bound is 768 bits

for double pre
ision [17℄.

Having an eÆ
ient algorithm to �nd the hardest to round 
ases, for a given fun
tion and a given


oating-point format, would help to repla
e guessed bounds | whi
h are usually overestimated |

by sharper and rigorous bounds. It would thus enable one to design very eÆ
ient libraries with


orre
t rounding. Then there would be no good reason any more to ex
lude those fun
tions from

the 
orre
t rounding requirements of the IEEE-754 standard.

Exhaustive sear
h methods 
onsist in �nding the hardest to round 
ases of the given fun
tion

in the given range. They give the best possible bound, but are very time-
onsuming. Moreover, a

sear
h for a given pre
ision gives little knowledge for another pre
ision.

We propose here a new algorithm belonging to that 
lass. It naturally extends the �rst algorithm

proposed by Lef�evre [12℄, and is based on Coppersmith's ideas.

1

Previous related work was done by Elkies, who gives in [7℄ a new algorithm using latti
e redu
tion

to �nd all rational points of small height near a plane 
urve; for example his re
ord:

5853886516781223

3

� 447884928428402042307918

2

= 1641843


orresponds to a worst 
ase of the fun
tion x

3=2

for a 53-bit input and a 79-bit output; his other

example

2220422932

3

� 283059965

3

� 2218888517

3

= 30


orresponds to a worst 
ase of the fun
tion (x

3

+ y

3

)

1=3

in 32-bit arithmeti
. More re
ently Gonnet

[8℄ also used latti
e redu
tion to �nd worst 
ases, however his approa
h seems equivalent to Lef�evre's

algorithm.

1

To our best knowledge, this is the �rst non-
ryptographi
 appli
ation of Coppersmith's work.

RR n° 4586



4 D. Stehl�e, V. Lef�evre, P. Zimmermann

Figure 1. A fun
tion graph and the grid of ma
hine numbers. Worst 
ases 
orre-

spond to grid points with a small verti
al distan
e to the 
urve.

Our paper is organized as follows: Se
tion 2 explains in mathemati
al terms the problem we

want to solve, re
alls Lef�evre's algorithm and analyzes its 
omplexity. Se
tion 3 des
ribes our new

algorithm, after a short survey on latti
e redu
tion and Coppersmith's work, whi
h we heavily

use. Se
tion 4 presents some new worst 
ases found with our algorithm for the 2

x

fun
tion, in

double-extended pre
ision and quadruple pre
ision. Se
tion 5 dis
usses some ideas for possible

improvements and open questions.

2. Preliminaries

2.1. De�nitions and Notations. We assume we work here with 
oating-point numbers with a

mantissa of n bits. Let N = 2

n

; for instan
e, N = 2

53


orresponds to double pre
ision, N = 2

64


orresponds to double-extended pre
ision, and N = 2

113


orresponds to quadruple pre
ision. A

worst 
ase for a fun
tion f is a 
oating-point number x su
h that f(x) has m identi
al bits after

the round bit. If those m bits equal (resp. di�er from) the round bit, x is a worst 
ase for dire
ted

rounding (resp. rounding to nearest).

For sake of simpli
ity, we 
onsider here dire
ted rounding only (towards �1, towards +1,

towards zero), sin
e a worst 
ase for rounding to nearest at pre
ision n 
orresponds to a worst 
ase

at pre
ision n+ 1 for dire
ted rounding. To �nd worst 
ases for dire
ted rounding, we throw away

the �rst n signi�
ant bits of the result mantissa. Then a worst 
ase of length m 
orresponds to

jNf(x) mod 1j < 2

�m

, where x mod 1 := x�bxe denotes the \
entered" fra
tional part (see Fig. 1).

We also 
onsider that both argument x and result y = f(x) are normalized, i.e.

1

2

� x; f(x) < 1.

This is easy to a
hieve by multiplying x or f(x) by some �xed powers of 2, unless the exponent of

f(x) varies a lot in the 
onsidered range. This ex
ludes the 
ase of numeri
ally irregular fun
tions

like sinx for large x. Given a polynomial approximation P (t) to Nf(

t

N

) (for example a Taylor

expansion), the TMD 
an be redu
ed to the following problem.

Real Small Value Problem (Real SValP): Given positive integers M and T , and a polyno-

mial P with real 
oeÆ
ients, �nd all integers jtj < T su
h that

(1) jP (t) mod 1j <

1

M

:

Remark 1: The mantissa bound N does not appear expli
itly in the real SValP, however the

polynomial P (t) depends on N , and so does the error made in the polynomial approximation.

Remark 2: If the fra
tional bits of the fun
tion behave randomly, we 
an expe
t �

T

M

worst 
ases.

Therefore we may assume T �M if we want only few worst 
ases.

2

2

The notation x� y is equivalent to x = O(y).

INRIA



Worst Cases and Latti
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2.2. Lef�evre's Algorithm. Lef�evre's algorithm [12, 13℄ works as follows. One 
onsiders a linear

approximation to the fun
tion f on small intervals. Those approximations are 
omputed from

higher order polynomial approximations on larger intervals, using an eÆ
ient s
heme based on the

\table of di�eren
es"method. On ea
h small interval, worst 
ases are found using a modi�ed version

of the Eu
lidean algorithm, whi
h gives a lower bound for jNf(

t

N

) mod 1j on that interval.

Assume f(x) = a

0

+ a

1

x + a

2

x

2

+ O(x

3

) around x = 0. Sin
e we negle
t the terms of order

two or more in Nf(

t

N

), we must have ja

2

T

2

N

j �

1

M

so that the error 
oming from the polynomial

approximation does not ex
eed the distan
e

1

M

. Together with T � M , it follows T � N

1=3

.

Therefore the 
omplexity of Lef�evre's algorithm is O(N

2=3+"

), sin
e we have to 
onsider

N

T

� N

2=3

small intervals to 
he
k a 
omplete mantissa range.

In pra
ti
e Lef�evre's algorithm is expensive but feasible for the double pre
ision (N

2=3

� 4 �10

10

),

near from the limits of the 
urrent pro
essors for double-extended pre
ision (N

2=3

� 7 � 10

12

), and

out of rea
h for quadruple pre
ision (N

2=3

� 5 � 10

22

).

3. A New Algorithm Using Latti
e Redu
tion

In that se
tion, we �rst state some basi
 fa
ts about latti
es | we refer to [15℄ for an introdu
tion

to that subje
t | and we explain Coppersmith's theorem, on whi
h our algorithm is based. Then

we introdu
e the algorithm, we prove its 
orre
tness and we analyze its 
omplexity.

3.1. Some Basi
 Fa
ts in Latti
e Redu
tion Theory. A latti
e L is a dis
rete subgroup of

R

n

, or equivalently the set of all integral 
ombinations of ` � n linearly independent ve
tors over

R, that is:

L = f

`

X

i=1

n

i

b

i

jn

i

2 Zg:

We de�ne the determinant, also 
alled the volume, of the latti
e L as:

det(L) =

`

Y

i=1

jjb

�

i

jj;

where jj:jj is the Eu
lidean norm and [b

�

1

; :::;b

�

`

℄ is the Gram-S
hmidt orthogonalization of [b

1

; :::;b

`

℄.

The basis [b

1

; :::;b

`

℄ of L is not unique and on an algorithmi
 point of view, only bases whi
h 
onsist

of small linearly independent ve
tors of L are of interest. Those so-
alled redu
ed bases always exist

and 
an be 
omputed in polynomial time with the well-known LLL algorithm [14℄.

Theorem 1. Given a basis [b

1

; :::; b

`

℄ of a latti
e L � Z

n

, the LLL algorithm provides in polynomial

time in ` and in the bit-lengths of the jjb

i

jj's, a basis fv

1

; :::; v

`

g satisfying:

1. jjv

1

jj � 2

`

2

det(L)

1

`

;

2. jjv

2

jj � 2

`

2

det(L)

1

`�1

.

(This is not the strongest result, but is suÆ
ient for our needs.)

Coppersmith (see [4, 5℄, or [6℄ for a better des
ription) found re
ently an important 
onsequen
e

of this theorem: one 
an 
ompute the small roots of a multivariate polynomial modulo an integer N

in polynomial time. His method proved very powerful to forge 
ryptographi
 s
hemes (see [2, 3, 4℄

for example). Our new algorithm intensely uses that te
hnique.

3.2. The Integer Small Value Problem. The problem that will prove interesting in our 
ase

is the following: given a univariate polynomial P 2 Z[x℄ of degree d, �nd on whi
h small integer

entries it has small values modulo a large integer N . Equivalently, we are looking for the small

integer roots of the bivariate polynomial:

Q(x; y) = P (x) + y (mod N):

RR n° 4586



6 D. Stehl�e, V. Lef�evre, P. Zimmermann

We now explain how Coppersmith's te
hnique helps solving it. First let � be a positive integer

(that will grow later to in�nity), and assume (x

0

; y

0

) is a root of Q modulo N . We 
onsider the

family of polynomials Q

i;j

(x; y) = x

i

Q

j

(x; y)N

��j

with 0 � i + dj � d�. Then (x

0

; y

0

) is a root

modulo N

�

of ea
h Q

i;j

, when
e of ea
h linear 
ombination of them.

Our goal is to build two integer 
ombinations of those polynomials, v

1

(x; y) and v

2

(x; y), whi
h

take small values | i.e. less than N

�

| for small x and y, more pre
isely jxj � X and jyj � Y for

�xed bounds X and Y . Thus, if (x

0

; y

0

) is a small root of v

1

and v

2

modulo N , (x

0

; y

0

) is also a

root of v

1

and v

2

over Z, and (x

0

; y

0

) will be found by looking at the integer roots of the resultant

Res

y

(v

1

; v

2

) 2 Z[x℄.

It remains to explain how to �nd those two polynomials. For this we 
onsider the latti
e of

dimension

(�+1)(d�+2)

2

generated by the ve
tors asso
iated with the Q

i;j

(Xx; Y y): the ve
tor asso-


iated with a bivariate polynomial

P

i;j

a

i;j

x

i

y

j

has its x

i

y

j


oordinate equal to a

i;j

X

i

Y

j

. We give

here the shape of the matrix we get in the 
ase d = 3 and � = 2.

i=j

0=0

1=0

2=0

3=0

4=0

5=0

6=0

0=1

1=1

2=1

3=1

0=2

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

N

2

N

2

X

N

2

X

2

N

2

X

3

N

2

X

4

N

2

X

5

N

2

X

6

� � � � NY

� � � � NXY

� � � � NX

2

Y

� � � � NX

3

Y

� � � � � � � � � � � Y

2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Sin
e we get a triangular matrix, the 
al
ulation of the determinant is obvious:

det(L) = N

d

3

�

3

+o(�

3

)

�X

d

2

6

�

3

+o(�

3

)

� Y

d

6

�

3

+o(�

3

)

:

Therefore, by Theorem 1, where here the latti
e dimension satis�es ` �

d

2

�

2

, the LLL algorithm

gives us two ve
tors v

1

and v

2

of norm less than N

2

3

�+o(�)

�X

d

3

�+o(�)

� Y

1

3

�+o(�)

when � grows to

in�nity. Those ve
tors v

1

and v

2


orrespond to two polynomials v

1

(x; y) and v

2

(x; y). Moreover if

jxj � X and jyj � Y , jv

k

(x; y)j �

P

i;j

jv

(k)

i;j

j

jxj

i

jyj

j

X

i

Y

j

� C �maxjv

(k)

i;j

j � C � jjv

k

jj for a 
ertain 
onstant

C. Thus, to get jv

k

(x; y)j < N

�

, it is suÆ
ient that:

C �N

2

3

�+o(�)

�X

d

3

�+o(�)

� Y

1

3

�+o(�)

< N

�

;

whi
h asymptoti
ally gives the bound X

d

Y � N .

Using Coppersmith's te
hnique, one 
an thus solve the integer SValP in polynomial time as long

as X

d

Y < N

1��

. In fa
t, this is not 
ompletely true be
ause we used an argument we 
annot prove:

we assumed that Res

y

(v

1

; v

2

) 6= 0. This heuristi
 has been made very often in 
ryptography (see

[2, 3, 4℄).

3.3. The SLZ Algorithm. Substituting N by 1, X by T , and Y by 1=M in the integer SValP,

we �nd exa
tly the real SValP. The only diÆ
ulty is that P (x) has real 
oeÆ
ients, and the LLL

algorithm does not work well with real input. The following algorithm over
omes that diÆ
ulty

(we present here a 
omplete algorithm to solve the TMD, but the sub-algorithm 
onsisting of steps

3 to 11 may be of interest to solve the real SValP itself).

Input: a fun
tion f , positive integers N , T , M , d, �

Output: all worst 
ases at distan
e < 1=M for f(

t

N

) for jtj � T

1. Let P (t) the Taylor expansion of Nf(

t

N

) up to order d, and n =

(�+1)(d�+2)

2

2. Compute a bound " su
h that jP (t)�Nf(

t

N

)j < " for jtj � T

INRIA



Worst Cases and Latti
e Redu
tion 7

3. Let M

0

= b

1=2

1=M+"


, C = (d+ 1)M

0

, and

3

P

0

(x) =

1

C

bCP (Tx)e

4. Let fe

1

; : : : ; e

n

g  fx

i

y

j

g for 0 � i+ dj � d�

5. Let fg

1

; : : : ; g

n

g  fC

�

(Tx)

i

(P

0

(x) +

y

M

0

)

j

g for 0 � i+ dj � d�

6. Form the n� n matrix L where L

k;l

is the 
oeÆ
ient of the monomial e

k

in g

l

7. V  C

��

Latti
eRedu
e(L)

8. Let v

1

; v

2

the two smallest ve
tors from V , and p

1

(x; y) and p

2

(x; y)

the 
orresponding polynomials

9. if 9x; y;2 [�1; 1℄ with jp

1

(x; y)j � 1 or jp

2

(x; y)j � 1, then return(FAIL)

10. p(t) Res

y

(p

1

(t=T; y); p

2

(t=T; y)); if p(t) = 0 then return(FAIL)

11. for ea
h t

0

in IntegerRoots(p(t); [�T; T ℄) do

12. if jNf(

t

0

N

) mod 1j < 1=M then output t

0

.

(Note that the matrix L has integer entries sin
e CP

0

(x) has integer 
oeÆ
ients, and M

0

divides

C.)

3.4. Corre
tness of the Algorithm.

Theorem 2. In 
ase algorithm SLZ does not return FAIL, it behaves 
orre
tly, i.e. it prints exa
tly

all integers t 2 [�T; T ℄ su
h that jNf(

t

N

) mod 1j < 1=M .

Proof. Be
ause of the �nal 
he
k in step 12, we only have to 
he
k that no worst 
ase is missed.

Suppose there is t

0

2 [�T; T ℄ with jNf(

t

0

N

) mod 1j < 1=M . Then jP (t

0

) mod 1j < 1=M + " �

1

2M

0

,

and jP

0

(x) � P (Tx)j �

d+1

2C

for jxj � 1, thus jP

0

(t

0

=T ) mod 1j <

1

2M

0

+

d+1

2C

� 1=M

0

. When
e

P

0

(t=T ) + u = 0 mod 1 has a root (t

0

; u

0

) with ju

0

j < 1=M

0

. Sin
e p

1

(t; y) and p

2

(t; y) are linear


ombinations of P

0

(t=T )+

y

M

0

and its powers, then (t

0

;M

0

u

0

) is a 
ommon root of p

1

(t; y) and p

2

(t; y)

modulo 1, and even over the reals sin
e jp

1

j; jp

2

j < 1. Thus t

0

is an integer root of Res

y

(p

1

; p

2

), and

will be found at line 11. �

3.5. Choi
e of Parameters and Complexity Analysis.

3.5.1. Coppersmith's Bound. Be
ause of the use of the Coppersmith's te
hnique in our algorithm,

to insure the algorithm does not return FAIL at step 9, the bound \X

d

Y � N" has to be veri�ed.

In our 
ase, X 
orresponds to T , Y to 1=M

0

and N to 1, so we get:

T �M

1

d

:

3.5.2. Choi
e of the Degree d With Respe
t to T . Let (a

i

)

i

the Taylor 
oeÆ
ients of f . Sin
e we

negle
t Taylor 
oeÆ
ients of degree d + 1 and greater, the error made in the approximation to

Nf(

t

N

) by P (t) is � a

d+1

T

d+1

N

�d

. Sin
e we are looking for worst 
ases with jP (t) mod 1j < 1=M ,

we want T

d+1

N

�d

� 1=M , i.e. MT

d+1

� N

d

.

3.5.3. Complexity Analysis. Thus we have two bounds for T : the �rst one T � M

1=d


omes from

the Coppersmith's method, the se
ond one T

d+1

� N

d

=M 
omes from the a

ura
y of the Taylor

expansion. Therefore for M � N

d

2

2d+1

, Coppersmith's bound wins and implies T �M

1=d

, whereas

for M � N

d

2

2d+1

, Lagrange's bound gives T

d+1

� N

d

=M . The largest bound for T is obtained for

M � N

d

2

2d+1

, with T � N

d

2d+1

. For d = 1, we �nd the 
onstraint T � N

1=3

from Lef�evre's method;

for d = 2, this gives T � N

2=5

with M � N

4=5

; for d = 3, this gives T � N

3=7

with M � N

9=7

.

With M � N

k

, we get a best possible interval length T � N

1

2

�

1

8k

+o(

1

k

)

.

3

The notation bCP (Tx)e means that we round to the nearest integer ea
h 
oeÆ
ient of CP (Tx).
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N M T d � est. time

double 2

53

2

28

2

15

1 1 560 days

2

53

2

53

2

20

2 2 120 days

pre
ision 2

53

2

106

2

25

4 2 45 days

double 2

64

2

32

2

19

1 1 140 years

extended 2

64

2

64

2

24

2 2 43 years

pre
ision 2

64

2

128

2

30

4 2 9 years

quadruple 2

113

2

70

2

35

1 1 1600 Gyears

2

113

2

113

2

43

2 2 94 Gyears

pre
ision 2

113

2

226

2

53

4 2 1.6 Gyears

Figure 2. Best experimental parameters for double, double-extended and quadru-

ple pre
ision, and estimated time for an exponent range of N=2 values.

3.5.4. Working Pre
ision. In step 1, we 
an use 
oating-point 
oeÆ
ients in the Taylor expansion

P (t) instead of symboli
 
oeÆ
ients, as long as it introdu
es no error in step 3 while 
omputing

P

0

(x). With d-bit 
oating-point 
oeÆ
ients, a ne
essary 
ondition is that 2

d

> CN to ensure the


onstant 
oeÆ
ient from P

0

(x) is 
orre
t.

Remark 3: When sear
hing worst 
ases with M � N , degree 2 is enough. Indeed, N

1�d

T

d

�

N

1�d

M sin
e T

d

� M (Coppersmith's bound), and for d � 3, N

1�d

T

d

� N

2�d

� 1=N � 1=M .

Thus all Taylor terms of degree � 3 give a negligible 
ontribution to Nf(

t

N

), and the largest value

of T is N

2=5

, giving a 
omplexity of N

3=5

to sear
h a whole range of N=2 values. More generally,

for M � N

k

, degree 2k is enough, giving a 
omplexity of N

2k

4k+1

.

4. Experimental Results

We have implemented algorithm SLZ in the Pari/GP system (version 2.2.4-alpha) [1℄ and ex-

perimented it on a Athlon XP 1600+ under Linux. We have 
hosen the 2

x

fun
tion sin
e it is

the easiest one, with only one exponent range to study. Fig. 2 shows for ea
h target pre
ision

(double, double-extended, quadruple), and for M � N and M � N

2

, the best parameters (T , d,

and �) for our method, together with the estimated time to 
he
k the whole exponent range, i.e.

N=2 
oating-point numbers. For ea
h pre
ision, the �rst row gives the best parameters for the

d = � = 1 
ase, whi
h is what Gonnet 
onsiders in [8℄; 
omparing that �rst row to the following

ones shows the speedup obtained. For M � N , the speedup in
reases from 3 to 17, when
e is

not dramati
. However for M � N

2

, we get a speedup of about 1000 in quadruple pre
ision with

respe
t to the naive method (d = � = 1), with (d; �) = (4; 2). Fig. 3 shows a few worst 
ases

found using algorithm SLZ for double-extended and quadruple pre
ision. These experiments tend

to show that with a 
arefully tuned implementation, and several 
omputers running a few months,

solving the TMD for the double-extended pre
ision is nowadays feasible.

5. Possible Improvements and Open questions

We have presented a new algorithm, based on latti
e redu
tion, to sear
h for worst 
ases for


orre
t rounding of analyti
 fun
tions. The �rst experimental results show that algorithm SLZ

is quite eÆ
ient, espe
ially to dete
t worst 
ases at distan
e mu
h less than 2

�n

, where n is the

target pre
ision. However the eÆ
ien
y largely depends on the fun
tion 
onsidered, like in Lef�evre's

algorithm.

Several open questions remain. Does this approa
h extend like in the modular 
ase ([4℄) to

fun
tions of two variables like x

y

or ar
tan

x

y

?

Our algorithm is 
omplementary to that of Elkies [7℄, whi
h works well when M � N (in our

notation), i.e. when we expe
t many worst 
ases, whereas our algorithm is more eÆ
ient when

INRIA
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tion 9

N t

0

N2

�1=2+t

0

=N

mod 1

2

64

586071771766963 0:1 1

47

001111:::

2

64

594068190588573 0:0 0

48

100010:::

2

64

891586182147388 0:1 1

50

001000:::

2

64

9014384889202147 0:0 1

53

010011:::

2

64

9602866023852631 0:0 0

54

111001:::

2

113

1119374922072865495 0:0 1

63

000000:::

2

113

8923960372306650064 0:0 0

64

101011:::

2

113

43616445401128570224 0:0 1

65

011110:::

2

113

53608038600996804036 0:0 1

67

000001:::

Figure 3. Some worst 
ases found for the 2

x

fun
tion in double-extended and

quadruple pre
ision.

M � N , i.e. when we expe
t only few worst 
ases, or none. However, in the 
ase of f(x) = x

3=2

,

related to Hall's 
onje
ture, Elkies proposes a spe
ial-purpose algorithm to �nd all worst 
ases at

distan
e < 1=N in O(N

1=2+"

). Does this algorithm generalize to other algebrai
 fun
tions?

What is the best 
omplexity one may obtain for the TMD using Coppersmith's method? Cop-

persmith gives in [6℄ some arguments giving eviden
e that T � M

1=d

might be the best possible

bound for �nding in polynomial time the roots of general modular univariate polynomials of degree

d. Could one improve the te
hnique by 
onsidering the shape of our polynomials, like is done by

Boneh and Durfee [2℄ for the small inverse problem with jkj < N

0:292

?

Referen
es

[1℄ Batut, C., Belabas, K., Bernardi, D., Cohen, H., and Olivier, M. User's Guide to PARI/GP, 2000.

ftp://megrez.math.u-bordeaux.fr/pub/pari/manuals/users.pdf.

[2℄ Boneh, D., and Durfee, G. Cryptanalysis of RSA with private key d less than N

0:292

. In Pro
eedings of

Euro
rypt'99 (1999), vol. 1592 of Le
ture Notes in Computer S
ien
e, Springer-Verlag, pp. 1{11.

[3℄ Boneh, D., Durfee, G., and Howgrave-Graham, N. Fa
toring N = p

r

q for large r. In Pro
eedings of

Euro
rypt'99 (1999), vol. 1592 of Le
ture Notes in Computer S
ien
e, Springer-Verlag, pp. 326{337.

[4℄ Coppersmith, D. Finding a small root of a bivariate integer equation; fa
toring with high bits known. In

Pro
eedings of Euro
rypt'96 (1996), U. Maurer, Ed., vol. 1070 of Le
ture Notes in Computer S
ien
e, Springer-

Verlag, pp. 178{189.

[5℄ Coppersmith, D. Finding a small root of a univariate modular equation. In Pro
eedings of Euro
rypt'96 (1996),

U. Maurer, Ed., vol. 1070 of Le
ture Notes in Computer S
ien
e, Springer-Verlag, pp. 155{165.

[6℄ Coppersmith, D. Finding small solutions to small degree polynomials. In Pro
eedings of CALC'01 (2001),

vol. 2146 of Le
ture Notes in Computer S
ien
e, Springer-Verlag, pp. 20{31.

[7℄ Elkies, N. Rational points near 
urves and small nonzero jx

3

� y

2

j via latti
e redu
tion. In Pro
eedings of

ANTS-IV (2000), W. Bosma, Ed., vol. 1838 of Le
ture Notes in Computer S
ien
e, Springer-Verlag, pp. 33{63.

[8℄ Gonnet, G. A note on �nding diÆ
ult values to evaluate numeri
ally. http://www.inf.ethz.
h/personal/

gonnet/FPA

ura
y/NastyValues.ps, Sept. 2002. 3 pages.

[9℄ IEEE standard for binary 
oating-point arithmeti
. Te
h. Rep. ANSI-IEEE Standard 754-1985, New York, 1985.

Approved Mar
h 21, 1985: IEEE Standards Board, approved July 26, 1985: Ameri
an National Standards

Institute, 18 pages.

[10℄ Iorda
he, C. S., and Matula, D. W. In�nitely pre
ise rounding for division, square root, and square root

re
ipro
al. In Pro
eedings of 14th IEEE Symposium on Computer Arithmeti
 (1999), pp. 233{240.

[11℄ Lang, T., and Muller, J.-M. Bounds on runs of zeros and ones for algebrai
 fun
tions. In Pro
eedings of

ARITH'15 (Vail, Colorado, 2001), N. Burgess and L. Ciminiera, Eds., IEEE Computer So
iety, pp. 13{20.

[12℄ Lef

�

evre, V. Moyens arithm�etiques pour un 
al
ul �able. PhD Thesis,

�

E
ole Normale Sup�erieure de Lyon, Jan.

2000.

[13℄ Lef

�

evre, V., and Muller, J.-M. Worst 
ases for 
orre
t rounding of the elementary fun
tions in double

pre
ision. In Pro
eedings of the 15th IEEE Symposium on Computer Arithmeti
 (ARITH'15) (2001), N. Burgess

and L. Ciminiera, Eds., IEEE Computer So
iety, pp. 111{118.

RR n° 4586



10 D. Stehl�e, V. Lef�evre, P. Zimmermann

[14℄ Lenstra, A. K., Lenstra, H. W., and Lov

�

asz, L. Fa
toring polynomials with rational 
oeÆ
ients. Mathe-

matis
he Annalen 261 (1982), 515{534.

[15℄ Lov

�

asz, L. An algorithmi
 theory of numbers, graphs and 
onvexity. SIAM le
ture series 50 (1986).

[16℄ Muller, J.-M. Proposals for a spe
i�
ation of the elementary fun
tions. In Abstra
ts of SCAN'2002 (2002),

J.-L. Lamotte and F. Ri
o, Eds., Laboratory LIP6, Paris, Fran
e, pp. 54{55.

[17℄ Ziv, A. Fast evaluation of elementary mathemati
al fun
tions with 
orre
tly rounded last bit. ACM Trans. Math.

Softw. 17, 3 (1991), 410{423.

INRIA
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