
Laboratoire de l’Informatique du Parallélisme

Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398 

An Algorithm that Computes a Lower Bound

on the Distance Between a Segment and Z

2

Vincent Lef�evre

June 1997

Research Report N

o

97-18

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr 
Téléphone : (+33) (0)4.72.72.80.00    Télécopieur : (+33) (0)4.72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France



An Algorithm that Computes a Lower Bound

on the Distance Between a Segment and Z

2

Vincent Lef�evre

June 1997

Abstract

We give a fast algorithm for computing a lower bound on the dis-

tance between a straight line and the points of a regular grid. This

algorithm is used to �nd worst cases when trying to round the ele-

mentary functions correctly in 
oating-point arithmetic, which con-

sists in returning the machine number that is the closest (there are

other rounding modes) to the exact result.

Keywords: elementary functions, 
oating-point arithmetic, rounding

R�esum�e

Nous donnons un algorithme rapide permettant de calculer une mi-

noration de la distance entre un segment de droite et les points d'une

grille r�eguli�ere. Cet algorithme est utilis�e pour trouver les pires cas

lorsque l'on arrondit exactement les fonctions �el�ementaires en arith-

m�etique �a virgule 
ottante, ce qui consiste �a renvoyer le nombre

machine le plus proche (il existe d'autres modes d'arrondi) du r�esul-

tat exact.

Mots-cl�es: fonctions �el�ementaires, arithm�etique virgule-
ottante, arrondi



An Algorithm that Computes a Lower Bound

on the Distance Between a Segment and Z

2

Vincent Lef�evre

June 1997

1 Introduction

Our goal is to provide exactly rounded elementary functions in 
oating-point

arithmetic. That is, when computing f(x), where f is exp, log, sin, cos, etc. . .

and x is a \machine number", we want to always get the machine number that

is the closest

1

to f(x) [1]. To do this, we �rst compute (with a precision that is

somewhat higher than the \target" precision) an approximation to f(x). Then

we round the approximation. The problem is to know if we get the same result

as if we had rounded the exact value f(x). Indeed, if the approximation to f(x)

is not accurate enough, we cannot ensure that f(x) is correctly rounded; this

problem is known as the Table Maker's Dilemma. To solve this problem, we

must know with which precision we must carry out the intermediate calculations;

that is, we must know the smallest possible non-zero value of jf(x)� yj where

x is a machine number and y is either a machine number or the average of two

consecutive machine numbers, depending on the rounding mode.

For a given x, the above distance jf(x) � yj is denoted d. We split the

considered domain into very small intervals, and in each interval I, we look for

the set S

I

of machine numbers x for which d is less than a given real "

I

; we can

choose "

I

small enough such that S

I

is generally empty, but large enough so

that we can approximate the function by degree-1 polynomials, i.e., segments.

Approximating the function can be performed quickly enough; the part that

takes most of the time is the tests themselves. As the total number of points

x is very large, e.g., of the order of 10

20

for the double-precision numbers, we

need a very fast algorithm.

In the chosen domains, the machine numbers are regularly spaced, so that

we can multiply the numbers by powers of two to consider that they are, in

fact, integers. Thus the problem is now: what are the points on the given

segment such that the x-coordinate is an integer and the distance between the

1

We also consider other \rounding modes", e.g., we may want to get the largest machine

number that is less than or equal to f(x).

1



y-coordinate and the integers is less than a given "? We recall that in most

cases, there are no such points (from the choice of ").

The naive approach consists in testing each point whose x-coordinate is an

integer: each iteration requires an addition and a comparison by calculating

modulo 1 (this is possible if one uses the integer arithmetic of the processor),

and shifting the segment by " upwards: with only one unsigned comparison, we

can test if a given point is in the interval [0; 2"]. The time required by the other

operations can be neglected.

If the number of points to test, denoted N , is large enough (e.g., 1000 or

larger), there exists a faster method, using the fact that the set S

I

is generally

empty: we can look for a lower bound on the distance d, and if d is larger than

", then S

I

is empty; otherwise, we can split the interval into subintervals and

use this method with di�erent parameters or use the naive approach.

The segment has an equation of the form y = ax � b, where x is restricted

to a given interval, e.g., 0 � x < N . In Section 2, we give some mathematical

preliminaries and notations. In Section 3, we study the distribution of the

points k:a modulo 1, where k is an integer satisfying an inequality 0 � k < n;

in particular, we mention a theorem known as the three-distance theorem [2,

3, 4]. In Section 4, we give the algorithm, based on the properties described in

Section 3.

2 Mathematical Preliminaries { Notations

R , Q , Z, N respectively denote the sets of real numbers, rational numbers,

integers and non-negative integers.

R=Z is the additive group of the real numbers modulo 1. This set can be

viewed as a circle, or the segment [0; 1] where both points 0 and 1 are identi�ed

(i.e., reals 0 and 1 represent the same point). With this second representation,

the point represented by 0 (or 1) can be regarded as an origin. If a 2 R=Z and

k 2 N , k is said to be the (group) index of k:a (in the group generated by a).

If a 2 R , its image in R=Z will also be denoted a, as there is no possible

confusion.

[x; y] represents an interval of real numbers (open, if one has round brackets).

[[x; y]] represents an interval of integers. The symbol # denotes the cardinality

of a �nite set.

3 Properties of k:a mod 1

In this section, we study the properties of the points y = k:a modulo 1, where

a is a given real number and k is an integer restricted to a given interval, e.g.,

2



satisfying 0 � k < N (where N is a given positive integer). Since RnQ is dense

into R and thanks to topological properties, we can suppose that a =2 Q for the

mathematical study; thus we avoid casual equalities (see below). The numbers

a and y may be regarded as elements of R=Z . Let us take for n 2 N :

E

n

= fk:a 2 R=Z : k 2 N ; k < ng:

Since a =2 Q , the set E

n

has exactly n elements, i.e., there is no multiple-order

point. On examples, we can see that the distribution of the points of E

n

has

very interesting properties. In particular, we will look for a construction of E

n

based on distances between consecutive points on R=Z .

An example is given on the following �gure. We chose a rational number

(17=45) for a to make the notations simpler and multiplied the rational numbers

by 45 to get integers, and instead of dealing with R=Z , we deal with Z=45Z . Of

course, in our example, we have chosen n small enough to avoid the problems

mentioned above (casual equalities. . . ).

For 0 � i < n, the e

n;i

's denote the images of the points of E

n

in [0; 1),

in increasing order. We de�ne e

n;n

= 1, which represents the same point as

e

n;0

= 0. The distances between two consecutive points on the segment [0; 1]

(or the circle R=Z) are the values e

n;i+1

� e

n;i

for 0 � i < n.

We now give a new construction of E

n

(the equivalence will be proved later),

based on distances. For all n � 2, we de�ne a sign s

n

2 f�1;+1g and a sequence

S

n

of n 4-tuples

S

n

= (d

n;i

; r

n;i

; j

n;i

; k

n;i

)

0�i<n

where d

n;i

is a positive real number representing a distance, r

n;i

is a positive in-

teger representing a rank associated with the distance, and both j

n;i

and k

n;i

are

elements of N representing group indices. Let us take D

n

= fd

n;i

: 0 � i < ng,

which is the set of the distances in S

n

, h

n

= maxD

n

and `

n

= minD

n

; we

will show that D

n

has two or three elements only (this is the three-distance

theorem). The sequence S

n

and the sign s

n

are de�ned by:

d

2;0

= a; d

2;1

= 1� a; r

2;0

= r

2;1

= 1; s

2

= sign(1� 2a);

j

2;0

= 0; k

2;0

= 1; j

2;1

= 1; k

2;1

= 0;

and the following transformation. Let i be the unique index such that d

n;i

= h

n

and the rank r

n;i

is minimal. The 4-tuple (d

n;i

; r

n;i

; j

n;i

; k

n;i

) is replaced by

two consecutive 4-tuples de�ned below; the other terms of the sequence remain

unmodi�ed and in the same order. The distances of the two 4-tuples are `

n

and h

n

� `

n

but the order is determined by s

n

: `

n

then h

n

� `

n

, if s

n

= +1;

h

n

� `

n

then `

n

, if s

n

= �1. The new ranks are the smallest positive integers

such that all the ranks associated with the distance are di�erent, i.e., all the

couples (d; r) in the sequence are di�erent; note that h

n

� `

n

6= `

n

since a is

irrational. The group indices (j

n;i

; k

n;i

) are replaced by (j

n;i

; n) and (n ; k

n;i

).

Finally, we take s

n+1

= s

n

� sign(h

n

� 2`

n

), i.e., the sign of s

n

changes if and

3



0 45
1

0 45
1 2

0 45
1 23

0 45
1 23 4

0 45
1 23 4 5

0 45
1 23 4 56

0 45
1 23 4 56 7

0 45
1 23 4 56 78

0 45
1 23 4 56 78 9

0

0

0

0

0

0

0

0

0

e e e e e e e6,0 6,1 6,2 6,3 6,4 6,5 6,6

d d d d d d6,0 6,1 6,2 6,3 6,4 6,5

n = 2

n = 3

n = 4

n = 5

n = 6

n = 7

n = 8

n = 9

n = 10

17 28

1 1

17

1

17

2

11

1

6

1

11

2

17

2

11

1

6

1

11

2

11

1

6

2

11

3

h 3

h 3 l 3l 3- h 4

h 4l 4 l 4-

17 28

17 11

6 11

6 5

6 6 116 5 6 5

1 2 3 1324

6 66 5 6 5

1 2 1324

6 5

35

5 66 5 6 5

4 2 1324

6 5

35

5 56 5 6 5

4 5 1324

6 5

35

1

1 2

only if `

n+1

< `

n

; this choice ensures that intervals having the same length are

split in the same way (see �gure).

We can associate a function f

n

: [[0; n� 1]] ! R=Z with each sequence S

n

,

such that each function f

n

is a restriction of a function f : N ! R=Z with

f(0) = 0 and f(k)� f(j) = d (mod 1) for each (d; r; j; k) of a sequence S

n

.

Let us take the last example. For n = 2, we have two points on the cir-

cle Z=45Z , with respective coordinates f(0) = 0 and f(1) = 17 (modulo 45).

These two points form two intervals. The �rst interval has length 17, the left

end is point 0, the right end is point 1, and the rank is 1 (initial interval);

thus (d; r; j; k) = (17; 1; 0; 1). The second interval has length 45 � 17 = 28,

the left end is point 1, the right end is point 0, and the rank is also 1; thus

(d; r; j; k) = (28; 1; 1; 0). Now, let us consider the n = 3 to 4 iteration. For

4



n = 3, we have f(0) = 0, f(1) = 17, and f(2) = 34. The interval of length

h

3

= 17 and the minimal rank is I = (17; 1; 0; 1). This 4-tuple is replaced by

I

0

= (6; 1; 0; 3) and I

00

= (11; 2; 3; 1) respectively. Since d

0

+ d

00

= d, j

0

= j,

k

00

= k, and k

0

= j

00

= n, this transformation de�nes a new point f(3) = 6.

We now give the theorem showing that both constructions (E

n

and S

n

) are

equivalent. It will be proved later.

Theorem 1 For all n � 2 and 0 � i < n, we have: d

n;i

= e

n;i+1

� e

n;i

,

e

n;i

= j

n;i

:a and e

n;i+1

= k

n;i

:a, i.e., 8 k � 0; f(k) = k:a.

Let us take C

n

= #fi : d

n;i

= h

n

g and de�ne a sequence (


i

; �

i

):

(


0

; �

0

) = (a; 1� a); (


i+1

; �

i+1

) = (minf


i

; �

i

g; j


i

� �

i

j);

i.e., at each iteration, one keeps the smaller element and replaces the larger one

by the di�erence.

The following theorem says that some sequences S

n

contain only two di�erent

distances, and the next pair of distances is obtained by replacing the larger

distance with the di�erence. Between such two sequences, there is a transient

period, where the three distances (both distances of the initial sequence, and

the di�erence) are present.

Theorem 2 There exists a strictly increasing function ' : N ! N such that

'(0) = 2, and for all i � 0:

D

'(i)

= f


i

; �

i

g; and for '(i) < n < '(i+ 1); D

n

= f


i

; �

i

; �

i+1

g:

For all i and n such that '(i) 6 n < '(i + 1), one has '(i + 1) = n + C

n

. In

particular, '(i+ 1)� '(i) = C

'(i)

.

� Proof. Theorem 2 is a direct consequence of the construction of the sequences

S

n

: we only use the fact that, at each iteration, an interval of length h

n

is

replaced by two intervals of lengths `

n

and h

n

� `

n

. �

Theorem 1 will be deduced from the following lemma.

Lemma 1 For all n such that #D

n

= 2, i.e., n 2 '(N ):

1. r

n;0

= r

n;n�1

= 1;

2. if s

n

= +1, then d

n;0

= `

n

and d

n;n�1

= h

n

;

if s

n

= �1, then d

n;0

= h

n

and d

n;n�1

= `

n

;

3. j

n;0

= k

n;n�1

= 0,

k

n;0

= #fi : d

n;i

= d

n;n�1

g,

j

n;n�1

= #fi : d

n;i

= d

n;0

g;

5



4. for all (d; r; j; k), the values j� r and k� r only depend on the value of d.

� Proof. This lemma can be proved by induction on n. The main points are given

in this proof. Details are left to the reader.

For the proof, (i;m) denotes the point i of the lemma for n = m (1 � i � 4,

m � 2).

We can easily verify that, from the de�nition of S

2

, the lemma is true for

n = 2.

Assume that the lemma is true for a given n 2 '(N ). Let us prove that it is

still true for the next value n

0

2 '(N ). We recall that, from the initial value n

to the next value n

0

, each interval of length h

n

is split into two intervals.

First, let us see what happens for n + 1. The interval of length h

n

and

rank 1 is split into two intervals of lengths `

n

and h

n

� `

n

. From point (1; n),

this interval is adjacent to an end point of [0; 1]. From the construction of S

n+1

,

the two new intervals are placed in such a way that the interval of length h

n

�`

n

is adjacent to the end point. This proves point (1; n+1), therefore point (1; n

0

).

Using point (2; n) and the fact that s has changed if and only if ` has changed,

this also proves point (2; n

0

).

Now, let us consider point 3. From the construction of the sequences, both

indices j

m;0

and k

m;m�1

will still be zero for m = n

0

, and one of the indices

k

m;0

and j

m;m�1

, depending on the value of s

n

, will not change from m = n to

m = n

0

. Let us denote this index by �(m) and the other index by �

0

(m). From

points (2; n) and (3; n), this index �(m) is equal to #fi : d

n;i

= h

n

g, which is

equal to #fi : d

n

0

;i

= h

n

� `

n

g; this proves the part of point (3; n

0

) concerning

�(n

0

). The other index �

0

(n

0

) will be added when m = n+1, therefore it will be

equal to n. And we have

#fi : d

n

0

;i

= `

n

g = #fi : d

n;i

= `

n

g+#fi : d

n;i

= h

n

g = #S

n

= n;

which proves the last part of point (3; n

0

).

Concerning point 4, let us start with d = `

n

. By symmetry, we can take

s

n

= +1 (the opposite case is similar). For all (`

n

; r; j; k), where 1 � r � j

n;n�1

,

we have j = r � 1 and k = k

n;0

+ r � 1. The new 4-tuple (`

n

; j

n;n�1

+ 1; j; k)

in S

n+1

will satisfy j = j

n;n�1

and k = n. Thus we still have j = r � 1 and

k = #S

n

= k

n;0

+ j

n;n�1

= k

n;0

+ r � 1. Distance d = h

n

� `

n

(the other

distance in S

n

0

) is new in S

n+1

, so that there is nothing else to verify for the

moment. We have just proved point (4; n + 1). Points (4; n + 2) to (4; n

0

) can

be deduced from point (4; n+ 1) and the construction of the sequences. �

Now, we can prove Theorem 1.

� Proof of Theorem 1. We prove Theorem 1 by induction, in a way similar to

the proof of the lemma. For n = 2, Theorem 1 is true.

6



Assume that the theorem is true for a given n 2 '(N ). Let us prove that it

is true for n+ 1, then for the other values up to the next value in '(N ).

By symmetry, we assume that s

n

= +1. According to the lemma, we have

j

n;n�1

+ k

n;0

= n. Therefore

f(n) = j

n;n�1

:a+ `

n

= j

n;n�1

:a+ d

n;0

= j

n;n�1

:a+ k

n;0

:a = n:a;

and the theorem is true for n+ 1. Considering the interval (h

n

; r + 1; j; k), we

have j = j

n;n�1

+ r since j � r is a constant (according to the lemma). Thus

f(n+ r) = j:a+ `

n

= (j

n;n�1

+ r):a+ k

n;0

:a = (n+ r):a

and the theorem is true for n+ r + 1. �

4 Algorithm

We will consider the successive D

'(i)

, and memorize the position of point b in

the interval that contains this point (the distance from b to the lower bound of

the interval) and the way in which the intervals are split, i.e., the values h

n

, `

n

and s

n

, where n = '(i). We recall that, at each iteration, the intervals of length

h

n

are split into two intervals of lengths `

n

and h

n

� `

n

(in the order given by

s

n

), and the intervals of length `

n

remain unchanged. We stop when n � N ,

where N is the initial number of values to be tested. Then we can calculate the

distance from b to the two ends of the interval.

In fact, we want to know whether the distance between the segment and Z

2

is larger than " or not. To avoid calculating the distance from b to the upper

end of the interval, we apply the algorithm to b+" instead of b, i.e., the segment

is shifted by " downwards, and we only need to know the distance from b to the

lower end of the interval, which is directly given by the algorithm.

Note that with this algorithm, we consider more points than wanted. But

the number of considered points is bounded from above by twice the initial

number of points, i.e., 2N , which is not too large for our problem, since the

value of N can be chosen such that the probability that the test fails is still

small.

In order to avoid copying or swapping values and testing \status variables"

(such as s), we will replace the variables ` and h by the variables x = d

n;0

and

y = d

n;n�1

(thus we avoid swapping ` and h each time h becomes less than `)

and we will remove status variables, like s, by duplicating the code: one part

for s = +1 and one part for s = �1. Thus we will know the position of h and `

without any test: (x; y) = (`; h) in the part where s = +1, and (x; y) = (h; `) in

the part where s = �1. Instead of comparing ` and h, and updating s, we will

compare x and y and perform a conditional branch.

We de�ne two new variables: u and v, which denote the number of intervals

of respective lengths x and y; they are only used for calculating n. The variable

7



b will be modi�ed in such a way that it always contains the distance from the

considered point to the lower end of the interval.

Of course, we will apply the algorithm to rational values, whereas the math-

ematical study considered irrational values for practical reasons. The algorithm

remains the same, but we must be careful concerning the particular cases (h = `,

then ` = 0) and ensure there is no in�nite loop.

We have four possible states:

� h+: the interval containing the point has length h and s = +1.

� h�: the interval containing the point has length h and s = �1.

� `�: the interval containing the point has length ` and s = �1.

� `+: the interval containing the point has length ` and s = +1.

In fact, we will group h� and `+ (point b in the interval of length x), as well

as h+ and `� (point b in the interval of length y). The algorithm given below

can be implemented in di�erent ways; an optimization may require that some

instructions are moved, removed or added.

Initialization: x = a; y = 1� a; u = v = 1;

In�nite loop:

if (b < x)

while (x < y)

if (u+ v > N) exit

y �= x; u += v;

if (u+ v > N) exit

x �= y; v += u;

else

b �= x;

while (y < x)

if (u+ v > N) exit

x �= y; v += u;

if (u+ v > N) exit

y �= x; u += v;

If b is larger than 2", then the distance between the segment and Z

2

is larger

than ". Otherwise the test fails, and we need a more accurate test (e.g., by

splitting the segment or using a slower algorithm).

We notice that this algorithm \contains" Euclid's algorithm, which is used

to compute the development of a into a continued fraction.

When one of the �rst partial quotients of the continued fraction of a is very

large, the above algorithm is rather slow; for instance, x is much smaller than

y (a partial quotient is large) and u is small (the partial quotient is one of the

�rst ones), thus the number u of points added at each iteration is small, and

many iterations are needed. It is possible to speed up the algorithm in these

cases; however it will slow it down in the general case, which occurs much more

8



often. Di�erent solutions are possible, but they depend on the context in which

the algorithm is applied.

5 Conclusion

The algorithms have been implemented on Sun SparcStations to �nd the value

of x, among the double-precision 
oating-point numbers in [

1

2

; 1], for which the

distance between expx and a machine number or a number equidistant to two

consecutive machine numbers is minimal. The naive algorithm required 3 cycles

per argument in average. The method described in this paper allowed to deal

with 30 arguments per cycle in average (with non-optimal parameters).

With the above algorithm, we obtained a speed-up of 90 over the naive

algorithm. This can still be improved by choosing better parameters, and by

improving the implementation (e.g., using the fact that the slope of the segment

increases very slowly for this particular problem). Thanks to this algorithm, we

will be able to solve the Table Maker's Dilemma in a reasonable time.

References

[1] V. Lef�evre, J.-M. Muller, and A. Tisserand. Towards correctly rounded

transcendentals. In Proceedings of the 13th IEEE Symposium on Computer

Arithmetic, Asilomar, USA, 1997. IEEE Computer Society Press, Los Alami-

tos, CA.

[2] V. T. S�os. On the distribution mod 1 of the sequence n�. Ann. Univ. Sci.

Budapest, E�otv�os Sect. Math., 1:127{134, 1958.

[3] J. Sur�anyi.

�

Uber die Anordnung der Vielfachen einer reellen Zahl mod 1.

Ann. Univ. Sci. Budapest, E�otv�os Sect. Math., 1:107{111, 1958.

[4] S. Swierczkowski. On successive settings of an arc on the circumference of a

circle. Fundamenta Math., 46:187{189, 1958.

9


