
Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON no 5668

SPI

On-the-fly Range Reduction

Vincent Lefèvre, Jean-Michel Muller Novembre 2000

Research Report No 2000-34

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr



On-the-fly Range Reduction

Vincent Lefèvre, Jean-Michel Muller

Novembre 2000

Abstract

In several cases, the input argument of an elementary function evaluation is

given bit-serially, most significant bit first. We suggest a solution for perform-

ing the first step of the evaluation (namely, the range reduction) on the fly: the

computation is overlapped with the reception of the input bits. This algorithm

can be used for the trigonometric functions sin, 
os, tan as well as for the

exponential function.

Keywords: Range reduction, Elementary functions, Computer arithmetic.

Résumé

Il arrive que l’oprande dont on doit calculer une fonction lmentaire soit dis-

ponible chiffre aprs chiffre, en srie, en commenant par les poids forts. Nous

proposons une solution permettant d’effectuer la premire phase de l’valuation

(la rduction d’argument) au vol: le calcul et la rception des chiffres d’entre se

recouvrent. Cet algorithme peut tre utilis pour les fonctions trigonomtriques

sin, 
os, tan, ainsi que pour l’exponentielle.

Mots-clés: Rduction d’argument, fonctions lmentaires, arithmtique des ordinateurs.



1 Introduction

The algorithms used for evaluating the elementary functions only give a correct result if the ar-

gument is within some bounded interval. To evaluate an elementary function f(x) (sine, cosine,

exponential,. . . ) for any x, one must find some “transformation” that makes it possible to deduce

f(x) from some value g(y), where

� y, called the reduced argument, is deduced from x;

� y belongs to the convergence domain of the algorithm implemented for the evaluation of g.

With the usual functions, the only cases for which reduction is not straightforward are the cases

where y is equal to x� nC , where n is an integer and C a constant (for instance, for the trigono-

metric functions, C is a multiple of �=8).

Example 1 (Computation of the cosine function) Assume that we want to evaluate 
os(x), and

that the convergence domain of the algorithm used to evaluate the sine and cosine of the reduced

argument contains [0;+�=4℄. We choose C = �=4, and the computation of 
os(x) is decomposed

in three steps:

� compute y and n such that y 2 [0;+�=4℄ and y = x� n�=4;

� compute g(y; n) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:


os(y) if n mod 8 = 0

p

2

2

(
os(y)� sin(y)) if n mod 8 = 1

� sin(y) if n mod 8 = 2

�

p

2

2

(
os(y) + sin(y)) if n mod 8 = 3

� 
os(y) if n mod 8 = 4

p

2

2

(� 
os(y) + sin(y)) if n mod 8 = 5

sin(y) if n mod 8 = 6

p

2

2

(
os(y) + sin(y)) if n mod 8 = 7

(1)

� obtain 
os(x) = g(y; n):

Example 2 (Computation of the exponential function) Assume that we want to evaluate ex in

a radix-2 number system, and that the convergence domain of the algorithm used to evaluate

the exponential of the reduced argument contains [0; ln(2)℄. We can choose C = ln(2), and the

computation of ex is then decomposed in three steps:

� compute y 2 [0; ln(2)℄ and n such that y = x� n ln(2);

� compute g(y) = e

y;

� compute ex = 2

n

g(y).

1



Unless multiple-precision arithmetic is used during the intermediate calculations, a straight-

forward computation of y as x � nC is to be avoided, since this operation will lead to catas-

trophic cancellations (i.e., to very inaccurate estimates of y) when x is large or close to an integer

multiple of C . Many algorithms have been suggested for performing the range reduction accu-

rately [1, 2, 3, 9, 11].

Now, there are many cases (on special-purpose systems) where the input argument of a calcu-

lation is generated most significant digit first. This happens, for instance, when this argument is

the result of a division or a square root obtained through a digit-recurrence algorithm [7, 10], the

output of an on-line algorithm [5, 12], or when it is generated by an analog-to-digital converter.

In the sequel of this paper, we present an adaptation of the Modular Range Reduction Algo-

rithm [3, 8] that accepts such digit serial inputs and performs the range reduction “on the fly”: most

of the computation is overlapped with the reception of the input bits, and the reduced argument is

produced almost immediately after reception of the last input bit. On-the-fly arithmetic algorithms

have already been proposed by Ercegovac and Lang for rounding or converting a number from

redundant to non-redundant representation [4, 6].

2 Notations

In the sequel of the paper, x = x

h

x

h�1

� � � x

0

:x

�1

x

�2

� � � x

`

is the input argument, C =

0:C

�1

C

�2

� � �C

�p

is the constant of the range reduction (with�p � `), and y = 0:y

�1

y

�2

� � � y

�p

is the reduced argument. We assume 1=2 � C < 1. These values satisfy:

� 0 � y < C;

� n = (x� y)=C is an integer.

We also define, for each i, m
i

(also called 2

i

mod C) as the unique value between 0 and C such

that (2i �m

i

)=C is an integer. These notations give some contraints on x and C (e.g., C is less

than 1, x is less than 2

h+1). One can easily adapt the algorithms given in the sequel of the paper to

variables belonging to other domains. We chose these contraints to make the presentation of the

algorithms simpler.

3 Non-redundant algorithm

Algorithm 1 is by far less efficient than the “redundant” algorithm given afterwards. We give

it because it is simpler to understand, and because the other algorithm is derived from it. The

basic idea is the following: at step i of the algorithm, when we receive input bit x
h�i

of x, we

add x

h�i

�

�

2

i

mod C

�

to an accumulator. If the accumulated value becomes larger than C , we

subtract C from it.

Let us call A
i+1

the value obtained after this operation. One can easily check that 0 � A

i+1

<

C and A
i+1

� x

h

x

h�1

� � � x

h�i

� 2

h�i is an integer multiple of C . Hence the final value stored in

the accumulator is equal to the reduced argument y.

A possible variant consists in computing U
i

= A

i

+ x

h�i

(m

h�i

�C) in parallel with T
i

, and

then to choose A
i+1

equal to U
i

if U
i

� 0, otherwise T
i

.

2



Algorithm 1 Non-redundant algorithm.

A

0

= 0

for i = 0 to h� ` do

T

i

= A

i

+ x

h�i

m

h�i

if T
i

< C then

A

i+1

= T

i

else

A

i+1

= T

i

� C

y = A

h�`+1

4 Redundant algorithm

Now, to accelerate the reduction, we assume that we perform the accumulations with carry-save

additions. The carry-save number system allows very fast, carry-free additions. On the other hand,

its intrinsic redundancy makes comparisons somewhat more complex. The accumulator will store

the values A
i

in carry-save. In the previous algorithm, we needed “exact” comparisons between

the A
i

’s and C . Having the A
i

’s stored in carry-save makes these “exact” comparisons difficult.

Instead of that, we will perform comparisons based on the examination of the first three carry-save

positions of A
i

only. This will not allow to bound the A
i

’s by C . Nevertheless, we will show that

the A
i

’s will be upper-bounded by C +

1

2

(therefore by 3

2

), which will suffice for our purpose. We

denote:

A

i

=

�

(A

(1)

i;0

; A

(2)

i;0

); (A

(1)

i;�1

; A

(2)

i;�1

); (A

(1)

i;�2

; A

(2)

i;�2

); : : : ; (A

(1)

i;�p

; A

(2)

i;�p

)

�

where A
(1)

i;j

and A
(2)

i;j

are in f0; 1g and

A

i

=

p

X

j=0

(A

(1)

i;j

+A

(2)

i;j

) � 2

�j

:

The variable T
i

of the non-redundant algorithm is used again, and is also represented in carry-save

form:

T

i

=

�

(T

(1)

i;0

; T

(2)

i;0

); (T

(1)

i;�1

; T

(2)

i;�1

); (T

(1)

i;�2

; T

(2)

i;�2

); : : : ; (T

(1)

i;�p

; T

(2)

i;�p

)

�

This gives algorithm 2.

In the loop, we do not want to waste time with a full comparison to know whether we need to

subtract C from T

i

or not. Thus we use a rough approximation b

T

i

to T

i

based on the first three

digits of T
i

. Since

�

(T

(1)

i;�3

; T

(2)

i;�3

); : : : ; (T

(1)

i;�p

; T

(2)

i;�p

)

�

� 2 � 2

�3

+ 2 � 2

�4

+ � � �+ 2 � 2

�p

<

1

2

;

we have:

b

T

i

� T

i

<

b

T

i

+

1

2

3



Algorithm 2 Redundant algorithm.

A

0

= 0 + 1

for i = 0 to h� ` do

T

i

= A

i

+


s

x

h�i

m

h�i

b

T

i

=

�

(T

(1)

i;0

; T

(2)

i;0

); (T

(1)

i;�1

; T

(2)

i;�1

); (T

(1)

i;�2

; T

(2)

i;�2

)

�

� 1

converted to non-redundant binary using a 3-bit adder

if bT
i

< C then

A

i+1

= T

i

else

A

i+1

= T

i

�


s

C (or T
i

+


s

(1� C)� 1)

B = A

h�`+1

+


s

(1� C)

Convert A
h�`+1

and B to non-redundant binary.

if B < 2 then

y = A

h�`+1

� 1

else

y = B � 2

We want to ensure that A
i

is always positive, that is, T
i

�C does not lead to a negative number.

Then, the subtraction is performed only when bT
i

� C . In this case, T
i

� C �

b

T

i

� C � 0.

Now, we want to find an upper bound on all the A
i

’s (and one on the T
i

’s). Suppose that for a

given i, we have A
i

� M . Thus T
i

� M + C . If bT
i

< C , then A

i+1

= T

i

<

b

T

i

+

1

2

< C +

1

2

;

otherwise, A
i+1

= T

i

� C � M . If we choose M = C +

1

2

, then A

i+1

� M in both cases. By

induction, A
i

� C +

1

2

and T
i

� 2C +

1

2

for all i.

The final value of y is converted to non-redundant representation using a conventional (i.e.,

non-redundant) addition. Another, faster, solution is to convert it on-the-fly, during the second

loop of the algorithm, using Ercegovac and Lang’s on-the-fly algorithm [4, 6] for conversion from

redundant to non-redundant representation.

5 An example: computation of 
os(1010:111).

We choose C = �=4 � 0:1100101 (p = 7). Since x = 1010:111, we have h = 3 and ` = �3).

The values of the m
i

’s are:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

m

3

= 2

3 mod �=4 � 0:0010011

m

2

= 2

2 mod �=4 � 0:0001001

m

1

= 2

1 mod �=4 � 0:0110111

m

0

= 2

0 mod �=4 � 0:0011011

m

�1

= 2

�1 mod �=4 = 0:1

m

�2

= 2

�2 mod �=4 = 0:01

m

�3

= 2

�3 mod �=4 = 0:001

The carry-save representations of the variables T
i

and A
i

generated by the redundant algorithm

are

4



x

3

= 1 T

0

=

�

1:0010011

0:0000000

0 < C A

0

=

�

1:0010011

0:0000000

x

2

= 0 T

1

=

�

1:0010011

0:0000000

0 < C A

1

=

�

1:0010011

0:0000000

x

1

= 1 T

2

=

�

1:0100100

0:0100110

0:1 < C A

2

=

�

1:0100100

0:0100110

x

0

= 0 T

3

=

�

1:0000010

0:1001000

0:1 < C A

3

=

�

1:0000010

0:1001000

x

�1

= 1 T

4

=

�

1:0001010

1:0000000

1 � C A

4

=

�

1:0010001

0:0010100

x

�2

= 1 T

5

=

�

1:0100101

0:0100000

0:1 < C A

5

=

�

1:0100101

0:0100000

x

�3

= 1 T

6

=

�

1:0010101

0:1000000

0:1 < C A

6

=

�

1:0010101

0:1000000

We then get y = 0:1010101, whereas the exact value of x mod �=4 is 0:10101010001 : : : .

6 Conclusion

The redundant algorithm presented in Section 4 allows fast, on-the-fly, range reduction. The

accuracy of this method is the same as that of the Conventional Modular range reduction method

(see [3, 8]).

References

[1] W. Cody and W. Waite. Software Manual for the Elementary Functions. Prentice-Hall,

Englewood Cliffs, NJ, 1980.

[2] W. J. Cody. Implementation and testing of function software. In P. C. Messina and A. Murli,

editors, Problems and Methodologies in Mathematical Software Production, Lecture Notes

in Computer Science 142. Springer-Verlag, Berlin, 1982.

[3] M. Daumas, C. Mazenc, X. Merrheim, and J. M. Muller. Modular range reduction: A new al-

gorithm for fast and accurate computation of the elementary functions. Journal of Universal

Computer Science, 1(3):162–175, March 1995.

[4] M. D. Ercegovac and T. Lang. On-the-fly conversion of redundant into conventional repre-

sentations. IEEE Transactions on Computers, C-36(7), July 1987. Reprinted in E. E. Swart-

zlander, Computer Arithmetic, Vol. 2, IEEE Computer Society Press Tutorial, Los Alamitos,

CA, 1990.

[5] M. D. Ercegovac and T. lang. On-line arithmetic: a design methodology and applications in

digital signal processing. In VLSI Signal Processing III, pages 252–263, 1988. Reprinted

5



in E. E. Swartzlander, Computer Arithmetic, Vol. 2, IEEE Computer Society Press Tutorial,

Los Alamitos, CA, 1990.

[6] M. D. Ercegovac and T. Lang. On-the-fly rounding. IEEE Transactions on Computers,

41(12):1497–1503, December 1992.

[7] M. D. Ercegovac and T. Lang. Division and Square Root: Digit-Recurrence Algorithms and

Implementations. Kluwer Academic Publishers, Boston, 1994.

[8] J.M. Muller. Elementary Functions, Algorithms and Implementation. Birkhauser, Boston,

1997.

[9] M. Payne and R. Hanek. Radian reduction for trigonometric functions. SIGNUM Newsletter,

18:19–24, 1983.

[10] J. E. Robertson. A new class of digital division methods. IRE Transactions on Electronic

Computers, EC-7:218–222, 1958. Reprinted in E. E. Swartzlander, Computer Arithmetic,

Vol. 1, IEEE Computer Society Press Tutorial, Los Alamitos, CA, 1990.

[11] R. A. Smith. A continued-fraction analysis of trigonometric argument reduction. IEEE

Transactions on Computers, 44(11):1348–1351, November 1995.

[12] K. S. Trivedi and M. D. Ercegovac. On-line algorithms for division and multiplication. In

3rd IEEE Symposium on Computer Arithmetic, pages 161–167, Dallas, Texas, USA, 1975.

IEEE Computer Society Press, Los Alamitos, CA.

6


