
Laboratoire de l’Informatique du
Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON
no 8512

SPI

Multiplication by an Integer Constant

Vincent Lef�evre

January 1999

Research Report N

o

1999-06

École Normale Supérieure de

Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr

Multiplication by an Integer Constant

Vincent Lef�evre

January 1999

Abstract

We present an algorithm allowing to perform integer multiplications by con-

stants. This algorithm is compared to existing algorithms. Such algorithms

are useful, as they occur in several problems, such as the Toom-Cook-like al-

gorithms to multiply large multiple-precision integers, the approximate com-

putation of consecutive values of a polynomial, and the generation of integer

multiplications by compilers.

Keywords: multiplication, addition chains

R�esum�e

Nous pr�esentons un algorithme permettant de faire des multiplications enti�eres

par des constantes. Cet algorithme est compar�e �a d'autres algorithmes exis-

tants. De tels algorithmes sont utiles, car ils interviennent dans plusieurs

probl�emes, comme les algorithmes du style Toom-Cook pour multiplier des

entiers �a grande pr�ecision, le calcul approch�e de valeurs cons�ecutives d'un po-

lynôme et la g�en�eration de multiplications enti�eres par les compilateurs.

Mots-cl�es: multiplication, châ�nes d'additions

1 Introduction

The multiplication by integer constants occurs in several problems, such as the

Toom-Cook-like algorithms to multiply large multiple-precision integers [3], the

approximate computation of consecutive values of a polynomial (we can use

an extension of the �nite di�erence method [2] that needs multiplications by

constants), and the generation of integer multiplications by compilers (some

processors do not have an integer multiplication instruction, or this instruction

is relatively slow). We look for an algorithm that will generate shift, add and

sub instructions to perform such a multiplication, which would be faster than a

general purpose integer multiplication. We assume that the constant may have

several hundreds of bits.

Here we are allowed to do shifts (i.e., multiplications by powers of 2) as fast

as additions. So, this is a more di�cult problem than the well-known addition

chains problem [2].

This problem has already been dealt with, to have an algorithm for compilers,

but for shorter constants (e.g., 32 bits). Most compilers implement an algorithm

from Robert Bernstein [1] or a similar algorithm. But this algorithm is too

slow for large constants. We will present a completely di�erent algorithm, that

is suitable to large constants. But �rst, a simpler algorithm and Bernstein's

algorithm will be presented.

2 Formulation of the Problem

A positive odd integer n is given. One looks for a sequence of positive integers

u

0

, u

1

, u

2

, . . . , u

q

such that:

� u

0

= 1;

� for i > 0, u

i

= js

i

u

j

+2

c

i

u

k

j, with j < i, k < i, s

i

2 f�1; 0; 1g, c

i

2 N;

� u

q

= n.

The problem is to �nd an algorithm that yields a minimal sequence (u

i

)

0�i�q

.

But this problem is very complex (it is believed to be NP-complete). So, we

have to �nd heuristics.

Note: here, we restrict to positive integers. We could change the formulation

to accept negative integers (i.e., remove the absolute value and allow the sign

to be applied to either u

j

or u

k

), but this would be an equivalent formulation.

3 The Binary Method

The simplest heuristic consists in writing the constant n in binary and generating

a shift and an add for each 1 in the binary expansion (e.g., starting from the

1

left): for instance, consider n = 113, that is, we want to compute 113x. In

binary, 113 = 1110001

2

. We generate the following operations:

3x (x << 1) + x

7x (3x << 1) + x

113x (7x << 4) + x

The number of operations is the number of 1's in the binary expansion,

minus 1.

This method can be improved using Booth's recoding, which consists in

introducing signed digits (�1 denoted 1, 0 and 1) and performing the following

transform:

1111 : : : 1111

| {z }

k digits

! 1 0000 : : : 000

| {z }

k � 1 digits

1:

This transform is based on the formula:

2

k�1

+ 2

k�2

+ � � �+ 2

2

+ 2

1

+ 2

0

= 2

k

� 1:

For instance, 11011 would be �rst transformed to 11101, then to 100101. Thus,

Booth's recoding allows to decrease the number of non-zero digits.

With the above example: 113 = 10010001

2

. This gives 2 operations only:

7x (x << 3)� x

113x (7x << 4) + x

4 Bernstein's Algorithm

Bernstein's algorithm is based on arithmetic operations. It doesn't explicitely

use the binary expansion of n. It consists in restricting the operations to k = i�1

and j = 0 or i�1 (in the formulation) and it can be used with di�erent costs for

the addition, the subtraction and the shifts. It is a branch-and-bound algorithm,

with the following formulas:

Cost(1) = 0

Cost(n even) = Cost(n=2

c

odd) + ShiftCost

Cost(n odd) = min

8

>

>

<

>

>

:

Cost(n+ 1) + SubCost

Cost(n� 1) + AddCost

Cost(n=(2

c

+ 1)) + ShiftCost + SubCost

Cost(n=(2

c

� 1)) + ShiftCost + AddCost

An advantage of Bernstein's algorithm is that there is no extra memory

(registers or RAM) needed for temporary results, in the generated code. But

extra memory is not always a problem.

2

5 A Pattern-based Algorithm

5.1 The Algorithm

This algorithm is based on the binary method: after Booth's recoding, we regard

the number n as a vector of signed digits 0, +1, �1, denoted 0, P and N (and

sometimes, 0, 1, 1). The idea (that is recursively applied) is as follows: we look

for repeating (non necessarily adjacent) digit-patterns, to have the most digits

P and N disappeared in one operation. To simplify, one only looks for patterns

that repeat twice (though, in fact, they may repeat more often). For instance,

20061 = 100111001011101

2

, recoded to P0P00N0P0N00N0P, contains the pattern

P000000P0N twice (the �rst one in the positive form and the second one in

the negative form N000000N0P). Thus, considering this pattern allows to have

3 nonzero digits disappeared in one operation, and we now need to compute

P000000P0N and the remaining 00P000000000000. This can be summarized by:

P000000P0N

- P000000P0N

+ 00P000000000000

P0P00N0P0N00N0P

On this example, 4 operations are obtained (P000000P0N is computed with

2 operations thanks to the binary method), whereas Bernstein's algorithm gen-

erates 5 operations.

Now, it is important to �nd a good repeating pattern quickly enough. The

number of nonzero digits of a pattern is called the weight of the pattern. We

look for a pattern having a maximal weight. To do this, we take into account

the fact that, in general, there are much fewer nonzero digits than zero digits,

in particular near the leaves of the recursion tree, because of the following

relation: w(parent) = w(child 1) + 2w(child 2). The solution is to compute

all the possible distances between two nonzero digits, in distinguishing between

identical digits and opposite digits. This gives an upper bound on the pattern

weight associated with each distance. For instance, with P0P00N0P0N00N0P:

distance upper bound weight

2 (P-N / N-P) 3 2

5 (P-N / N-P) 3 3

7 (P-P / N-N) 3 2

The distances are sorted according to the upper bounds, then they are tried

the one after the other until the maximal weight and a corresponding pattern

are found.

5.2 Comparison with Bernstein's Algorithm

This algorithm has been compared to Bernstein's and we found that on av-

erage, it is slightly better than Bernstein's for small constants. Comparisons

couldn't be performed on large constants because Bernstein's algorithm would

be too slow: the complexity of Bernstein's algorithm is exponential, whereas

3

the pattern-based algorithm is polynomial (it seems to be in O(n

3

) on average:

O(n

2

) for each recursion height).

If we consider the number of generated operations

1

by these algorithms for

the numbers up to 2

20

, the largest di�erence is obtained for 543413:

With the pattern-based algorithm, one obtains:

1: 255x (x << 8)� x

2: 3825x (255x << 4)� 255x

3: 19125x (3825x << 2) + 3825x

4: 543413x (x << 19) + 19125x

With Bernstein's algorithm, one obtains:

1: 9x (x << 3) + x

2: 71x (9x << 3)� x

3: 283x (71x << 2)� x

4: 1415x (283x << 2) + 283x

5: 11321x (1415x << 3) + x

6: 33963x (11321x << 2)� 11321x

7: 135853x (33963x << 2) + x

8: 543413x (135853x << 2) + x

5.3 Results on random numbers

An implementation of the algorithm has been tested on random numbers (an

exhaustive test would have been too slow). Here is the average number of

generated operations as a function of the number of bits (the �rst and the last

bits must be 1):

32 8:0

64 14:5

128 26:3

256 47:6

512 86:5

1024 157:4

2048 289:4

The ratio between two consecutive numbers is almost a constant. From this

results, we can conjecture that the average number of operations generated for

an n-bit integer is O(n

k

), where k � 0:85.

5.4 Possible Improvements

Our algorithm can still be improved. Here are some ideas, which have not been

implemented yet:

1

An operation is a shift, then an addition or a subtraction, i.e., the value q in the formu-

lation.

4

� One can look for common digit-patterns. For instance, consider

P0N0N00P0N0N000P0N, with pattern P0N0N. P0N appears both in the pat-

tern and in the remaining digits; thus, it needs to be computed only once

(under some conditions). A solution is to stop the recursion when the

maximal weight is equal to 1 (here, only the binary method can be used);

looking for common patterns would be easier. Note that common patterns

should be looked for before using the binary method: with the above ex-

ample, if we start with N0N in P0N0N, the common pattern P0N cannot be

used; we need to start with P0N in P0N0N.

� Sometimes, there are several choices that correspond to the maximal

weight. Instead of taking only one, one can try several patterns, and

keep the shortest operation sequence.

� One can consider the following transform, which does not change the

weight: P0N $ 0PP (and N0P $ 0NN). For instance, 11010101001

2

has

the default code P0N0P0P0P00P, but the equivalent code P00N0NN0P00P is

better (with the pattern P00N00N). As the number of equivalent codes is

exponential, we cannot test all of them; so, we have to look for a method

to �nd the best transforms.

� Instead of de�ning a pattern of maximal weight that appears twice, one

can de�ne a new digit consisting of two old nonzero digits. For instance,

consider 101010010101000101 and the pattern 10101. One de�nes a new

digit: A = 10000001, and obtains: A0A0A000101. Then, one de�nes

B = A00000001, and �nally obtains: A000B0B. This leads to 4 operations,

like the common-pattern method.

6 Conclusion

Thanks to the algorithm presented here, we will be able to perform fast mul-

tiplications by integer constants, which may have several hundred bits. Future

work will consist in improving this algorithm, doing some experiments to �nd

the complexity, and trying to prove some results.

References

[1] R. Bernstein. Multiplication by integer constants. Software { Practice and

Experience, 16(7):641{652, July 1986.

[2] D. Knuth. The Art of Computer Programming, volume 2. Addison Wesley,

1973.

[3] D. Zuras. More on squaring and multiplying large integers. IEEE Transac-

tions on Computers, 43(8):899{908, August 1994.

5

