
Laboratoire de l’Informatique du
Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON
no 5668

SPI

Constant Multipliers for FPGAs

Florent de Dine
hin, Vin
ent Lef�evre

May 2000

Resear
h Report N

o

2000-18

École Normale Supérieure de

Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip�ens-lyon.fr

Constant Multipliers for FPGAs

Florent de Dine
hin, Vin
ent Lef�evre

May 2000

Abstra
t

This paper presents a survey of te
hniques to implement multipli
ations by

onstants on FPGAs. It shows in parti
ular that a simple and well-known

te
hnique,
anoni
al signed re
oding,
an help design smaller
onstant mul-

tiplier
ores than those present in
urrent libraries. An implementation of

this idea in Xilinx JBits is detailed and dis
ussed. The use of the latest al-

gorithms for dis
overing eÆ
ient
hains of adders, subtra
tors and shifters for

a given
onstant multipli
ation is also dis
ussed. Exploring su
h solutions is

made possible by the new FPGA programming frameworks based on generi

programming languages, su
h as JBits, whi
h allow an arbitrary amount of

irregularity to be implemented even within an arithmeti

ore.

Keywords: Constant multipliers, FPGAs, KCM

R�esum�e

Cet arti
le dis
ute di��erentes te
hniques qui permettent d'impl�ementer des

multipli
ations par des nombres
onstants sur des r�eseaux de
ellules re
on-

�gurables (FPGAs). Il montre en parti
ulier qu'une te
hnique
lassique, le

re
odage
anonique en
hi�res sign�es, permet de
on
evoir des multiplieurs qui

sont plus petits que
eux que l'on trouve dans les biblioth�eques standard. Une

implantation dans le syst�eme de d�eveloppement Xilinx JBits en est pr�esent�ee

et dis
ut�ee. Puis nous dis
utons l'appli
ation aux FPGAs d'algorithmes plus

r�e
ents de
al
ul de
hâ�nes eÆ
a
es d'additions et d�e
alages pour la multi-

pli
ation par une
onstante donn�ee. L'�etude de
e type de solution est ren-

due possible par les nouveaux environnements de d�eveloppement pour FPGA

qui,
omme JBits, sont
onstruits au dessus d'un langage de programmation

lassique:
ela permet d'int�egrer des optimisations d'une
omplexit�e arbitraire

même dans le
ode d'un op�erateur arithm�etique.

Mots-
l�es: Multipli
ation par une
onstante, FPGA, KCM

1 Introdu
tion

Multipli
ation by a
onstant value is very useful in
omputational
ores su
h as

�lters and FFTs. From a hardware point of view, it is almost always a waste of

spa
e and time to use a generi
 multiplier to implement a
onstant multiplier.

This is all the more true on re
on�gurable systems, where
onstants may easily,

well, be
hanged. The
oeÆ
ients of a �nite impulse response (FIR) �lter,

for example, may be adjusted during the life of this �lter. However, as soon

as the lifetime of a
oeÆ
ient signi�
antly ex
eeds the re
on�guration time, it

makes sense to
onsider it a
onstant and to optimize the FPGA
on�guration

- here the multipliers whi
h input this
onstant { a

ordingly. In this work

the word \
onstant" will thus denote a value that is
onstant between two

re
on�gurations.

The purpose of this arti
le is to explore the design tradeo�s o�ered by
urrent

FPGAs for
onstant multipli
ation. There are two novel aspe
ts to
onsider.

First, the size of re
ent FPGAs makes it possible to
ompute on large numbers,

up to 32 bit wide and more. This invites us to explore new te
hniques for the

optimization of
onstant multipliers. Se
ond, new FPGA design tools (su
h as

PamDC [5℄, Xilinx JavaBits [6℄ or others [4℄) embed a universal and powerful

programming language in the hardware des
ription language. In our
ase, this

will allow a fair amount of
onstant-dependent optimization to be embedded in

the program of a hardware
onstant multiplier
ore.

Se
tion 2 provides a survey of the general problem of
onstant multipli
ation,

with a fo
us on FPGA implementations. Our implementation of a variable

size
onstant multiplier with
onstant-dependent routing is then detailed in

se
tion 3. The last se
tion des
ribes the roadmap of the work that this study

suggests.

2 Constant multipli
ation: A survey

Most algorithms are just brie
y introdu
ed: a more detailed des
ription will be

found in the referen
es given.

2.1 Multiple
onstant multipli
ations

The literature pays mu
h attention to the
ase of multiple
onstant multipliers

appearing in �lters like FIR, FFTs, or other ve
tor-produ
t based �lters for im-

age or signal pro
essing. Te
hniques su
h as Multiple Constant Multipli
ations

[12℄, Distributed arithmeti
s [12, 10, 11℄ and Multiple Constant Multiplier Trees

[1℄ (among other) have been developed to optimize the shift-and-add subexpres-

sions globally between the multipliers. There is probably still a lot of interesting

results to
ome in this �eld.

In the following of this paper, we will
on
entrate on the simpler
ase of a

single, isolated
onstant multipli
ation. The main reason for that is one of sim-

pli
ity. Nevertheless,
onsidering on one side the diÆ
ulty of global optimization

pro
esses when the problem is large, and on the other side the need for lo
ality

and regularity in the routing for performan
e reasons, this work might also be

useful in the
ontext of multiple
onstant multipliers.

1

Notations We will denote k the
onstant, written on n bits, and x the variable

to be multiplied, written on m bits.

2.2 Shift-and-add algorithms

for single
onstant multipli
ation

In this se
tion we
onsider various existing algorithms without regard to a hard-

ware or FPGA implementation: the
ost unit will be an addition or a subtra
-

tion.

2.2.1 Straightforward algorithm

The
lassi
al binary de
omposition of the
onstant k gives us the most straight-

forward algorithm : if we write

k =

n�1

X

i=0

2

i

k

i

with k

i

2 f0; 1g ; then we have

kx =

n�1

X

i=0

2

i

xk

i

:

The produ
t 2

i

x is
omputed simply by shifting the binary de
omposition of

x to the left, and the number of a
tual additions in the previous sum is the

number of 1s in the de
omposition of k. Thus this methods generates between

0 and n additions, with an average of n=2.

2.2.2 Canoni
al signed re
oding

A �rst variant of this algorithm (the origin of whi
h is un
lear a
ording to

Hwang [7℄) is to use some form of re
oding of the bits of the
onstant.. The idea

is to express the
onstant in a redundant digit system, typi
ally f1; 0; 1g where

1 has the value -1. A number like 0111 (=1+2+4) may then be re
oded as 1001

(=8-1). In the multipli
ation, a digit 1 is translated into a subtra
tion (whi
h

usually has the same
ost as an addition). For any k there exists a
anoni
al

representation where at least one digit out of two is a zero, whi
h means that

at most n=2 additions are needed for the
onstant multipli
ation. It
an also be

shown that su
h re
oding generates an average of n=3 additions.

2.2.3 Bernstein algorithm

The previous method, however, does not ne
essarily produ
e the shortest shift-

and-add
hain for a given
onstant multipli
ation (the problem is believed to be

NP-
omplete). For example, if k = 657, one may
he
k that kx = (8x + x) +

8(8x+x)+64(8x+x), whi
h means that the produ
t may be
omputed by only

three additions and three shifts (re-using the value 8x+ x).

A well-known algorithm is due to Bernstein [2℄. It is a bran
h-and-bound

method testing re
ursively if k has numbers of the form 2

i

� 1 or 2

i

+ 1 among

its divisors. However the exponential
omplexity of this algorithm makes it

impra
ti
al even for 32-bits
onstants.

2

2.2.4 Lef�evre algorithm

Lef�evre has therefore re
ently proposed a polynomial algorithm whi
h is based

on the dis
overy of patterns in the binary representation of k [8℄. This algo-

rithm gives better results than Bernstein's even for small
onstants, and allows

onstant multipliers up to several thousands of bits to be generated. So far

it has only been implemented on mi
ropro
essors to produ
e eÆ
ient
onstant

multipli
ations by very large numbers for a spe
i�
 problem (the exhaustive

worst-
ase sear
h for the
orre
t rounding of
oating-point fun
tion [9℄). One

of the purposes of our study is to evaluate its suitability for an FPGA imple-

mentation, whi
h
ould be useful for example in
ryptography appli
ations.

2.3 Some FPGA implementations

This se
tion explores in more details the
onstant multiplier design spa
e, in the

ase when the area
ost unit is one 4-input look-up table (LUT), the elementary

building blo
k of FPGAs of the Xilinx 4000 and Virtex families.

2.3.1 The naive shift-and-add algorithm

There is a very straightforward implementation of this algorithm as an FPGA

arithmeti

ore whi
h leads to a very regular stru
ture. The
ore
onsists of n

stages. Ea
h stage shifts the result of the previous stage by one bit, and either

adds x to it or not, depending on the value of the
orresponding bit in the

binary
ode of k.

Although the �nal produ
t will be
oded on m + n bits, it is easy to see

that ea
h adder needs only be of size m: as x (shifted) is added to the
urrent

partial sum, only the
orresponding bits of this sum parti
ipate in the addition.

Therefore the size of this
ore is m� n.

Su
h a
ore is given in the
urrent distribution of JBits as an example of

run-time parametrizable (RTP)
ore [6℄. Due to its simpli
ity and regularity, it

is very fast to generate, although very wasteful in spa
e.

2.3.2 The KCM algorithm

This algorithm, due to Chapman [3℄, is spe
i�
ally adapted to LUT-based FP-

GAs. It is also the basis for Distributed Arithmeti
s approa
hes
ited in 2.1.

The idea is to break down the binary de
omposition of x into 4-bit
hunks (or,

to express x in base 16):

x =

d

m

4

e

X

i=0

x

i

:16

i

:

Now the produ
t be
omes

kx =

d

m

4

e

X

i=0

kx

i

:16

i

and we have a sum of produ
ts kx

i

, ea
h of whi
h
an be
omputed by a 16�n+4

bits look-up table, x

i

being the address. Here the summation
an take the form

of an adder tree. The area
ost is d

m

4

e � (n+ 4) LUTs for the tables, plus the

adder tree of depth log

2

d

m

4

e (the adders being of growing size). In the best

3

ase, when m is a power of two (at least 8), the LUT
ost of the adder tree is

(

m

4

� 1)n+

m

2

log

2

m

4

,
ounting one full-adder
ell per LUT.

The total LUT
ost of the KCM is thus (

m

2

� 1)n+m+

m

2

log

2

m

4

.

These formulas do exa
tly mat
h the Xilinx KCM
ore generator for Virtex

[13℄. Su
h a
ore is also present in the
urrent JBits distribution, but only for

8� 8 bit multiplier. Its size is 8� 6 LUTs.

3 A variable size
onstant multiplier using
anon-

i
al re
oding

Re
ent FPGA development tools su
h as Xilinx JBits allow us to relax two

onstraints whi
h oriented the design of the previous
ores:

� routing may be arbitrarily irregular even within an arithmeti

ore, and

� the size of a
ore need not be known before
ompile time.

This se
tion details and dis
uss the implementation in JBits of a new
ore

generator for
onstant multipli
ation whi
h exploits this new freedom. It is a

rather straightforward implementation of the
anoni
al re
oding idea. The size

of the generated
ores is at most n�m=2 LUTs, and in average n�m=3 LUTs.

These
ores always have the form of a re
tangle of n LUTs height, so they
an

still be integrated in datapaths.

This is, area-wise, a de�nite improvement over the naive method, and even

over the KCM. The
at
h is that su
h a
ore generator needs to perform some

kind of
onstant-dependent routing.

3.1 Overview

Our generator �rst
omputes the
anoni
al re
oding of the
onstant, and then

instantiates a variable number of stages
omputing either an addition or a sub-

tra
tion, depending on the bits of the re
oding. Ea
h stage i
onsists of m full

adder
ells, and adds the
ontribution of the i-th non-zero bit (either x or �x) to

the partial sum shifted by the appropriate amount. The least signi�
ant bits of

this partial sum may be output dire
tly, as they don't appear in any subsequent

operation. Figure 1 shows for example a multiplier by 221.

This
ore generator
onsists in less than 1000 lines of heavily
ommented

Java. It is available for download at

http://www.ens-lyon.fr/~fdedine
/re
her
he/

3.2 Implementation details

We target Virtex
hips, where the adders may be very eÆ
iently implemented

using the dedi
ated fast
arry logi
. On Fig. 1, ea
h grey blo
k is a LUT

on�gured as a full adder, and on Fig. 2, ea
h small square represents the

output of a LUT (the LUTs are grouped by CLBs). In a
olumn of CLBs it is

thus possible to pla
e two fast adder sli
es.

To implement the subtra
tions, we
annot straightforwardly use the
lassi
al

two's
omplement notation a� b = a+ b+1, where the +1 is implemented as a

4

1

1

1

0

0

1

1

1

p0 p1 p2 p3 p4 p5 p6 p7

p8

p9

p10

p11

p12

p13

p14

p15

x0

x1

x2

x3

x4

x5

x6

x7

−x[0..7]

Figure 1: A 8� 8-bit multiplier by 221, using the re
oding 100100101

output test register

input test register
x=17

Note the first slice
computing −x

Multiplier by 221

Figure 2: The state view of a test of the multiplier by 221 in Boards
ope.

arry input to the adder. The problem is that we want ea
h stage to be only of

size m, i.e. to operate on the bits of the partial sum between the
urrent bit i

and i+m. A
arry in on the ith stage should however be input on bit 0 of the

partial sum, and would therefore potentially entail a
arry propagation along

the lower bits.

A solution would be to sum up all these
arries in at
ompile time, and then

start the sum (of x's and x's) with this initial value. We didn't �nd a
lever way

to do that without adding a sli
e of LUTs to the
ore, so we implemented another

solution whi
h has the same
ost and other advantages: a �rst sli
e
omputes

�x, and then all the sli
es are adders. Care must be taken however, when

we know that the
urrent partial sum is negative, to perform a sign extension

of this partial sum, i.e. feed the free inputs with ones instead of zeroes (see

Fig. 1). One advantage of this solution is that it makes the handling of two's

5

omplement signed numbers easy: as we already manipulate internally x and

�x, operating on signed input and signed
onstants is only a matter of setting

the sign extension bits properly (although this is not implemented yet).

The
ore generator only synthesizes this �rst �x sli
e when needed, whi
h

lead to a small modi�
ation of the
lassi
al
anoni
al re
oding algorithm: it

re
odes 3 as 101, whi
h in our
ase is more expensive as 11. Our re
oding

avoids this
ase, sometimes saving a sli
e.

Figure 3: The
ore view and state view in Boards
ope, for multipliers by

58995 = 10010011010010011, and 57344 = (1001)2

13

To implement the routing of the shifts, we �rst wrote a \stit
her" [6℄
ore

whi
h was a simpli�ed router able of doing only arbitrary shifts. Then Xilinx

released a new version of JBits in
luding an interfa
e to a generi
 router, and

we swit
hed to this one. This allows a
leaner and safer interfa
e of our
ore

to other JBits obje
t, ensuring that no routing resour
e
on
i
t will o

ur. It

also greatly simpli�ed our
ode. The drawba
k is that, being more general, the

Xilinx router is slower.

3.3 Experimental results

We extensively tested this
onstant multiplier
ore generator,
urrently only

under simulation with the Boards
ope tool. Unfortunately we have not yet been

able to make any measure nor estimation of the speed of the resulting
ores, as

we don't own a Virtex board, and JBits doesn't take timing into a

ount yet.

3.3.1 Area

We performed an exhaustive synthesis of all the possible multipliers by 16-bit

onstants. A

ording to previsions, the smallest multipliers use up no CLB (a

multipli
ation by 0 or a power of 2 is just wiring), the largest multiplier used

6

4�8 CLBs (i.e. 8 adders), and the average CLB
ount was 24:2, i.e. a little bit

more than 16/3 adders of 16 bits, due to the fa
t that we sometimes add a sli
e

to
ompute �x, and also to the wasted sli
e when the
ore uses an odd number

of sli
es (be
ause JBits
ore size is
ounted in CLBs of 4 LUTs, not in LUTs).

This is mu
h better than the KCM. For example, our 221 multiplier, whi
h

is the biggest 8-bit multiplier that our generator will synthesize, is one third

smaller than the JBits equivalent KCM (whi
h in theory
ould be only 4 LUTs

bigger, but is rounded up to the smallest CLB bounding box).

3.3.2 Synthesis time

The time
urrently needed to synthesize a
onstant multiplier
ore wouldn't

probably qualify for a real-time re
on�gurable
ore: although the time to
om-

pute the
anoni
al re
oding of the
onstant k is linear in n, whi
h means pra
ti-

ally less than a milise
ond,
omputing the irregular routing takes about 500ms

per sli
e (strangely enough, it's almost independent on the size of the adders) on

a 400MHz Pentium, using Sun's Java Runtime Environment. This is to
ompare

with the 400 ms it takes to instantiate a full 8bit KCM, whose implementation

is more dida
ti
al than optimized.

Note however that we weren't using a just-in-time
ompiler, so some improve-

ment may be expe
ted there, depending on the evolution of Java te
hnology.

3.4 Dis
ussion

This
onstant multiplier generator is mostly intended to be a �rst demonstrator

of the new possibilities o�ered by tools su
h as JBits. We should here brie
y

point several of its drawba
ks. A more detailed dis
ussion, espe
ially of perfor-

man
e questions,
an of
ourse only o

ur in the
ontext of an a
tual use.

Currently, the least signi�
ant bits of the result are not routed to a side

of the
ore (
ontrary to what Fig 1
ould lead to believe). These outputs are

JBits \ports", a

essible to the router without ne
essarily having to worry about

their a
tual lo
ation. This is a very
onvenient feature, but not ne
essarily a

desireable one from a performan
e point of view.

More importantly, our
ores will be diÆ
ult to pipeline, both internally (due

to the la
k of registers) and externally (due to the
onstant-dependent timing).

This is espe
ially a problem as most �lters involving
onstant multipli
ations

may be heavily pipelined. It will be interesting to see how irregular operators

behave in su
h a
ontext, but this study is de�nitely out of the s
ope of this

paper.

4 Work in progress

4.1 Bernstein and Lef�evre multipliers

We are
urrently investigating several other te
hniques to minimize the number

of additions. The question is, what size
an we expe
t? It is easy to build

a worst-
ase k (i.e. the k whi
h maximizes the number of adds or LUTs) for

most variants of Bernstein's algorithm, and this worst
ase is of the order of n=2

additions. Lef�evre algorithm is more
omplex, and we haven't built a generi

worst
ase. Exhaustive tests for n between 8 and 24 bits show that the algorithm

7

never generates more than 0:4n adders. This is however a minor improvement

over the n=2 of
anoni
al re
oding, all the more as

� the size of the adders is no longer
onstant, and it needs to be taken into

a

ount to evaluate the
ost in LUTs of the worst
ase, and

� the routing is here even more irregular than in the
anoni
al re
oding
ase.

Experimental results [8℄ suggest that the average number of additions pro-

du
ed by Lef�evre's algorithm is O(n

0:85

), whi
h is en
ouraging. For n = 32, the

average number of additions is 8, and for n = 64 it is 14.5. Here again we still

have to evaluate the CLB
ount, sin
e the size of the adders varies.

On the subje
t of routing, it is interesting to note that Bernstein algorithm

only generates additions and subtra
tions involving the result of the previous

stage and the initial x, whi
h is easier to route as the more general shift-and-add

hains of Lef�evre's algorithm. However Bernstein is impra
ti
al for n greater

than 24, and we will
on
entrate on Lef�evre's algorithm. For a small n, it is

always possible to put the two algorithms in
ompetition and to
hose the best

result for the
ore implementation.

Considering the previous study, our
urrent proje
t is to

� adapt Lef�evre algorithm to the limitations of FPGAs, and evaluate the

ost of its result more pre
isely (worst
ase and average, CLB
ount and

not only add
ount),

� explore other algorithms (for example, using double base number systems,

or
ompression algorithms �a la Lempel-Ziv),

� implement the best algorithms in JBits,

� test the area and speed of these
onstant multipliers in situation (in FIRs

or FFTs with real-world
onstants).

5 Con
lusion

This paper is a survey of the
onstant multipli
ation problem in the
ase of FP-

GAs. Its
ontribution is to show that modern FPGA development frameworks

su
h as JBits, being based on general-purpose programming languages, allow

designers to
onsider arithmeti

ores whi
h are mu
h more irregular than what

was previously possible. Arbitrarily
omplex optimization
an and must take

pla
e while programming the \hardware" part of re
on�gurable systems.

We have detailed the example of a
onstant multiplier generator based on

anoni
al re
oding whi
h, although
on
eptually simple, is mu
h better in terms

of LUT usage than the
lassi
al KCM approa
h. This example is hopefully the

�rst in a series of novel arithmeti
 approa
hes for the
on�gurable
omputing

era.

Referen
es

[1℄ D. Benyamin, W. Luk, and J. Villasenor. Optimizing FPGA-based ve
tor

produ
t designs. In IEEE Symposium on FPGAs for Custom Computing

Ma
hines, Napa Valley, CA, April 1999.

8

[2℄ R. Bernstein. Multipli
ation by integer
onstants. Software { Pra
ti
e and

Experien
e, 16(7):641{652, July 1986.

[3℄ K.D. Chapman. Fast integer multipliers �t in FPGAs (EDN 1993 design

idea winner). EDN magazine, May 1994.

[4℄ M. Chu, N. Weaver, K. Sulimma, A. DeHon, and J. Wawrzynek. Obje
t

oriented
ir
uit-generators in java. In IEEE Symposium on FPGAs for

Custom Computing Ma
hines, Napa Valley, CA, April 1998.

[5℄ Digital Equipment Corporation. PamDC: a C++ Library for the Simula-

tion and Generation of Xilinx FPGA Designs, 1997.

[6℄ S. A. Gu

ione and D. Levi. Run-time parameterizable
ores. In FPL'99,

pages 215{222, Glas
ow, August 1999. Springer Verlag, LNCS 1673.

[7℄ K. Hwang. Computer Arithmeti
 Prin
iples, Ar
hite
ture and Design. Wi-

ley, New York, 1979.

[8℄ V. Lef�evre. Multipli
ation by an integer
onstant. LIP re-

sear
h report RR1999-06 (ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/-

RR/RR1999/RR1999-06.ps.Z), Laboratoire d'Informatique du Parall�elisme,

Lyon, Fran
e, 1999.

[9℄ V. Lef�evre, J.-M. Muller, and A. Tisserand. Towards
orre
tly rounded

trans
endentals. IEEE Transa
tions on Computers, 47(11):1235{1243,

November 1998.

[10℄ Mahesh Mehendale, S. D.Sherlekar, and G. Venkatesh. Synthesis of

multiplier-less FIR �lters with minimum number of additions. In

IEEE/ACM International Conferen
e on Computer-Aided Design, pages

668{671, San Jose, CA USA, November 1995.

[11℄ Mahesh Mehendale, G. Venkatesh, and S. D.Sherleka. Optimized
ode

generation of multipli
ation-free linear transforms. In ACM IEEE Design

Automation Conferen
e, page 41, Las Vegas, NV USA, November 1996.

[12℄ M. Potkonjak, M.B. Srivastava, and A. Chandrakasan. EÆ
ient substi-

tution of multiple
onstant multipli
ations by shifts and additions using

iterative pairwise mat
hing. In ACM IEEE Design Automation Confer-

en
e, pages 189{194, San Diego, CA USA, June 1994.

[13℄ Xilinx Corporation. Constant (K) CoeÆ
ient Multiplier Generator for Vir-

tex, Mar
h 1999.

9

