
Finding Worst Cases for Correct Rounding of
Numerically Regular Math Functions in Fixed Precision

Vincent LEFÈVRE

Arénaire, INRIA Grenoble – Rhône-Alpes / LIP, ENS-Lyon

2009-10-20

[tmd2009.tex 32597 2009-10-20 13:53:22Z vinc17/vin]



[tmd2009.tex 32597 2009-10-20 13:53:22Z vinc17/vin]

History

Main facts about the search for worst cases itself:

1996 First tests on exp between 1/2 and 1 in double precision (binary64)
using finite differences on degree-2 polynomials (several months on
∼ 100 machines).

October 1996 First ideas, which will give my algorithm that computes a lower
bound on the distance between a segment and Z

2 (published in
June 1997).

1996–1998 First implementations.

January 1999 Last rewrite from scratch, with pen-and-paper proof.
The datatypes have not changed since!

October 2002 SLZ (not used in my binary64 tests).

January 2003 Switch from Sparc assembly to C with 64-bit types (algo with
divisions) + mpn layer of GMP (hierarchical approximations).

May 2004 Variant of my algorithm implemented.

June 2005 Arith-17 paper (new proof of my algorithm, variants).

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Finding Worst Cases for Correct Rounding. . . 2009-10-20 2 / 17



[tmd2009.tex 32597 2009-10-20 13:53:22Z vinc17/vin]

History [2]

Reliability:

January 2001 Important bug fix (worst cases may be missed).

January 2003 Important bug fix (same bug).

February 2003 Important bug fix (same bug). Testcase.

March 2003 Important bug fix (C version from January).

March 2003 Detect bad GMP installations.

June 2004 More data loss detection (communications with Maple).

February 2005 Important bug fix (in variant from May 2004).

May 2009 Detect some bugs (in my code, the compiler, the Linux kernel,
etc.) from the first-step results: check that all results look like
worst cases and that the number of potential worst cases is not
smaller than some bound (probabilistic hypotheses).
To be tested/completed.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Finding Worst Cases for Correct Rounding. . . 2009-10-20 3 / 17



[tmd2009.tex 32597 2009-10-20 13:53:22Z vinc17/vin]

The Problem

Goal: the exhaustive test of the elementary functions for the TMD in a fixed
precision (e.g., in binary64), i.e. “find all the breakpoint numbers x such that
f (x) is very close to a breakpoint number”.

Breakpoint number: machine number or midpoint number.

→ Worst cases for f and the inverse function f −1.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Finding Worst Cases for Correct Rounding. . . 2009-10-20 4 / 17



[tmd2009.tex 32597 2009-10-20 13:53:22Z vinc17/vin]

Hierarchical Approximations by Polynomials

Current implementation (but one could have more than 3 levels):

deg 2 deg 2 deg 2 deg 2 deg 2 deg 2 deg 2 deg 2 deg 2 deg 2

polynomial of degree d (large)

function f on an interval I

[approximation computed with Maple + Intpak]

deg 1 deg 1 deg 1 deg 1 deg 1 deg 1 deg 1

polynomial of degree 2

Finding approximations must be very fast: from the previous one.

Degree-1 polynomials: fast algorithm that computes a lower bound on the
distance between a segment and Z

2 (in fact, this distance, but on a larger
domain) [filter] + slower algorithms when needed.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Finding Worst Cases for Correct Rounding. . . 2009-10-20 5 / 17



[tmd2009.tex 32597 2009-10-20 13:53:22Z vinc17/vin]

Computing the Successive Values of a Polynomial

Example: P(X ) = X 3. Difference table:

0 1 8 27 64 125 216

1 7 19 37 61 91

6 12 18 24 30

6 6 6 6

0 0 0

On the left: coefficients in the basis

{

1,X ,
X (X − 1)

2
,

X (X − 1)(X − 2)

3!
, . . .

}

.

Can be done modulo some constant (very useful here).

Hierarchical approximations based on this method (regularly spaced intervals).

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Finding Worst Cases for Correct Rounding. . . 2009-10-20 6 / 17



[tmd2009.tex 32597 2009-10-20 13:53:22Z vinc17/vin]

The Problem With a Degree-1 Polynomial

In each interval:

f is approximated by a polynomial of degree 1 → segment y = b − ax .

Multiplication of the coordinates by powers of 2 → grid = Z
2.

One searches for the values n such that {b − n.a} < d0, where a, b and d0 are
real numbers and n ∈ J0,N − 1K.

{x} denotes the positive fractional part of x .

0

1

2

3

4

5
0

1

2

3

4

5

0

1

2

3

4

5

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Finding Worst Cases for Correct Rounding. . . 2009-10-20 7 / 17



[tmd2009.tex 32597 2009-10-20 13:53:22Z vinc17/vin]

The Problem With a Degree-1 Polynomial [2]

We chose a positive fractional part instead of centered.

→ An upward shift is taken into account in b and d0.

If a is rational, then the sequence 0.a, 1.a, 2.a, 3.a, . . . (modulo 1) is
periodical.

→ This makes the theoretical analysis more difficult.

→ In the proof, one assumes that a is irrational, or equivalently, that
a is a rational number + an arbitrary small irrational number.

But in the implementation, a is rational.

→ Extension to rational numbers by continuity.

→ Care has to be taken with the inequality tests since
◮ they are not continuous functions;
◮ problems can occur when the period has been reached: endless loops. . .

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Finding Worst Cases for Correct Rounding. . . 2009-10-20 8 / 17



[tmd2009.tex 32597 2009-10-20 13:53:22Z vinc17/vin]

Notations / Properties of k .a mod 1 (0 ≤ k < n)

Properties of the two-length configurations Cn = {k.a ∈ R/Z : k ∈ N, k < n},
to be proved by induction:

Intervals x0, x1, . . . , xu−1 of length x , where x0 is the left-most interval
and xr = x0 + r .a (translation by r .a modulo 1).

Intervals y0, y1, . . . , yv−1 of length y , where y0 is the right-most interval
and yr = y0 + r .a (translation by r .a modulo 1).

Total number of points (or intervals): n = u + v (determined by induction).

In short: 2 primary intervals x0 (left) and y0 (right) + images.

Initial configuration: n = 2, u = v = 1.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Finding Worst Cases for Correct Rounding. . . 2009-10-20 9 / 17



[tmd2009.tex 32597 2009-10-20 13:53:22Z vinc17/vin]

Example: The First Configurations

with a = 17/45.

0

45

y
0

0

17

x
0 1

28

y
0

0

17

x
0 1

17

x
1 2

11

y
0

0

6

x
0 3

11

y
1 1

6

x
1 4

11

y
2 2

11

y
0

0

6

x
0 3

6

x
3 6

5

y
1 1

6

x
1 4

6

x
4 7

5

y
2 2

6

x
2 5

5

y
0

Note: scaling by 45 on the figure.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Finding Worst Cases for Correct Rounding. . . 2009-10-20 10 / 17



[tmd2009.tex 32597 2009-10-20 13:53:22Z vinc17/vin]

From a Configuration to the Next One

The main idea: when adding new points, one of the primary intervals (no inverse
image) is affected first, then all its images are affected in the same way.
For instance, see both intervals of length 17 on the figure.

Since a is irrational, n.a is strictly between two points of smaller indices, one
of which, denoted r is non zero.

Therefore the points of indices r − 1 and n − 1 (obtained by a translation)
are adjacent, and their distance ℓ is either x or y .
→ Same distance ℓ between the points of indices r and n.

Thus the new point n splits an interval of length h = max(x , y) into two
intervals of respective lengths ℓ = min(x , y) and h − ℓ.

The length h − ℓ is new, therefore the corresponding interval does not have
an inverse image (i.e. by adding −a).

Therefore this interval has as a boundary point of index 0.

→ As a consequence, the point of index n is completely determined.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Finding Worst Cases for Correct Rounding. . . 2009-10-20 11 / 17



[tmd2009.tex 32597 2009-10-20 13:53:22Z vinc17/vin]

From a Configuration to the Next One [2]

The other intervals of length h will be split in the same way, one after the other
with increasing indices (translations by a).

Indices of the intervals of length h − ℓ: these are the indices of the
corresponding intervals of length h.

Indices of the intervals of length ℓ: assume that ℓ = x (same reasoning for
ℓ = y); the first interval of length x is obtained by a translation of an old
interval of length x (as shown in previous slide), necessarily xu−1 (the last
one) since the image of xi−1 is xi for all i < u. Thus this interval is xu and
we have xu = x0 + u.a. The next intervals: xu+1, xu+2, etc.

For the algorithm(s):

We only need to focus on what occurs in the primary intervals.

At the same time, we track the position of the point b:
◮ whether it is in an interval xk or in an interval yk ;
◮ its distance to the left endpoint of the interval.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Finding Worst Cases for Correct Rounding. . . 2009-10-20 12 / 17



[tmd2009.tex 32597 2009-10-20 13:53:22Z vinc17/vin]

The Algorithms

Basic algorithm (1997): returns a lower bound d on {b − n.a} for n ∈ J0,N − 1K
(in fact, d is the exact distance for n ∈ J0,N ′ − 1K, where N ≤ N ′ < 2N).

Here: parameters chosen so that d ≥ d0 in most intervals, allowing to
immediately conclude that there are no worst cases in the interval.

New algorithm (mentioned in 1998): returns the index n < N of the first point
such that {b − n.a} < d0, otherwise any value ≥ N if there are no such points.

Gives the information we need, but uses an additional variable, so that it is slower.

Good replacement for the naive algorithm.

Another improvement: test with a shift (fast!) if it is interesting to replace a
sequence of iterations by a single one with a division.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Finding Worst Cases for Correct Rounding. . . 2009-10-20 13 / 17



[tmd2009.tex 32597 2009-10-20 13:53:22Z vinc17/vin]

The Algorithms [2]

The necessary data:

the lengths x and y , and the numbers u and v of these intervals;

a binary value saying whether the point b is in an interval of length x or y ;

the index r of this interval (new algorithm only);

the distance d between b and the left endpoint of this interval.

Immediate consequence of the properties:

the left endpoint of an interval xr has index r ;

the left endpoint of an interval yr has index u + r .

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Finding Worst Cases for Correct Rounding. . . 2009-10-20 14 / 17



[tmd2009.tex 32597 2009-10-20 13:53:22Z vinc17/vin]

Subtractive Version of the Algorithms

In red: additional statements for the new algorithm.

Initialization: x = {a} ; y = 1− {a} ; d = {b} ; u = v = 1 ; r = 0 ;

if (d < d0) return 0

Unconditional loop:

if (d < x)

while (x < y)

if (u + v ≥ N) return N

y = y − x ; u = u + v ;

if (u + v ≥ N) return N

x = x − y ;

if (d ≥ x) r = r + v ;

v = v + u;

else

d = d − x ;

if (d < d0) return r + u

while (y < x)

if (u + v ≥ N) return N

x = x − y ; v = v + u;

if (u + v ≥ N) return N

y = y − x ;

if (d < x) r = r + u;

u = u + v ;

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Finding Worst Cases for Correct Rounding. . . 2009-10-20 15 / 17



[tmd2009.tex 32597 2009-10-20 13:53:22Z vinc17/vin]

Example of Domain Splitting

Input interval [1, 2[ decomposed into 213 = 8192 sub-intervals I.

For each sub-interval I of size 240:

Function f is approximated by a degree-d polynomial.

Code (C with the mpn layer of GMP) is generated: my algorithm is applied on
sub-intervals J of 215 = 32768 points (64-bit integer arithmetic), and in case
of failure, 212 = 4096 (or 211 = 2048) points, and if this still fails, the naive
method (difference table). Note: this can probably be improved, e.g. larger
intervals J (with 128-bit arithmetic?), variant instead of the naive method. . .

If GCC is used, the code is compiled using -fprofile-generate and tested
on the first 28 = 256 sub-intervals (for up to 22% speed-up on Opteron).

The code is recompiled using -fprofile-use and run.

The accuracy (chosen for efficiency) is not sufficient to determine the worst cases.
A second filter step is necessary: conventional algorithm (much slower but run on
much fewer inputs) on each potential worst case.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Finding Worst Cases for Correct Rounding. . . 2009-10-20 16 / 17



[tmd2009.tex 32597 2009-10-20 13:53:22Z vinc17/vin]

Polynomial Degree and Coefficient Size

Examples with a 54-bit significand and splitting into intervals of size 240.

For some functions and left endpoints of the interval, the table gives the degree of
the polynomial and the size (in bits) of the coefficient of highest degree.

function x0 degree size

exp x 1 6 320
exp x 8 7 352
exp x 64 9 416
log x 2 6 320
log x 21000 6 320
x4 1 4 224
x17 1 8 384
x345 1 12 544
x2065 1 18 736
x2065 2− ε 15 640

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Finding Worst Cases for Correct Rounding. . . 2009-10-20 17 / 17


