Introduction to the GNU MPFR Library

Vincent LEFEVRE

AriC, INRIA Grenoble — Rhéne-Alpes / LIP, ENS-Lyon

GdT AriC, 2014-04-22

[gdt201404.tex 68929 2014-04-22 10:17:19Z vinc17/xvii]

Outline

Introduction

Presentation of GNU MPFR, History
Why MPFR?

MPFR Basics

Output Functions

Test of MPFR (make check)
Applications

Timings

The Future — Work in Progress

Conclusion

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xviil

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon)

Introduction to the GNU MPFR Library

Introduction: Arbitrary Precision

Arbitrary precision: the ability to perform calculations on numbers whose “size”
can be arbitrarily large, with environmental limits (available memory, size of basic
data types, etc.).

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 3 /56

Introduction: Arbitrary Precision

Arbitrary precision: the ability to perform calculations on numbers whose “size”

can be arbitrarily large, with environmental limits (available memory, size of basic
data types, etc.).

Different kinds of (arbitrary-precision) arithmetics: integer (e.g., GMP/mpz),
rational (e.g., GMP/mpq), fixed-point, floating-point, etc.

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 3 /56

Introduction: Arbitrary Precision

Arbitrary precision: the ability to perform calculations on numbers whose “size”

can be arbitrarily large, with environmental limits (available memory, size of basic
data types, etc.).

Different kinds of (arbitrary-precision) arithmetics: integer (e.g., GMP/mpz),
rational (e.g., GMP/mpq), fixed-point, floating-point, etc.

Different kinds of floating-point-based arbitrary-precision arithmetics:
o digit-based (floating-point arithmetic):
> high radix (GMP/mpf: 232 or 2°*) or small radix (e.g., 2 [MPFR] or 10) with
digits packed in a basic (fixed-size) data type;
> basic data type: integer (high or small radix) or floating-point (high radix);

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 3 /56

Introduction: Arbitrary Precision

Arbitrary precision: the ability to perform calculations on numbers whose “size”

can be arbitrarily large, with environmental limits (available memory, size of basic
data types, etc.).

Different kinds of (arbitrary-precision) arithmetics: integer (e.g., GMP/mpz),
rational (e.g., GMP/mpq), fixed-point, floating-point, etc.

Different kinds of floating-point-based arbitrary-precision arithmetics:
o digit-based (floating-point arithmetic):
> high radix (GMP/mpf: 232 or 2°*) or small radix (e.g., 2 [MPFR] or 10) with
digits packed in a basic (fixed-size) data type;
> basic data type: integer (high or small radix) or floating-point (high radix);
o floating-point expansions. Value x represented by a tuple (x1, X2, X3, ..., Xp)
of fixed-precision floating-point numbers, with constraints like: x; = 0 or
|xi] < ulp(x;—1). Value represented: x = x; + xp + x3 + - - - + x,, (exactly).
Note: In practice, n small (e.g. n =2 for the long double C type of the
PowerPC ABI), thus no arbitrary precision for these implementations.

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 3 /56

What About Accuracy and Reproducibility?

About the same problems as in fixed precision, though no standards similar to
IEEE 754.

Accuracy and/or reproducibility (in a language, library or application) can be
documented for:

@ Operations. But most often, no documented error bounds. In a fixed radix,
reproducibility across platforms can be implied by correct rounding.

Example of Maple: radix 10; the precision can be chosen by setting the
Digits variable. No directed roundings, accuracy is not documented.
Problem for interval arithmetic: intpak assumed a maximum error of 0.6 ulp,
but counter-examples had been found. Now intpakX assumes a maximum
error of Lulp, but is that the case? — Results are not guaranteed.

Example of GMP/mpf: the radix depends on the platform (232 or 264).
— The results (though accurate) depend on the platform.

@ Expressions (anything above operations). Usually, no dynamic error tracking.
Alternatives: interval arithmetic, exact real arithmetic (see last slide).

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 4 /56

GNU MPFR in a Few Words

@ GNU MPEFR is an efficient multiple-precision floating-point library with
well-defined semantics (copying the good ideas from the IEEE-754 standard),
in particular correct rounding.

@ 80 mathematical functions, in addition to utility functions (assignments,
conversions. . .).

@ Special data (Not a Number, infinities, signed zeros).

@ Originally developed at LORIA, INRIA Nancy — Grand Est.
Since the end of 2006, a joint project between the INRIA project-teams
Arénaire (LIP, ENS-Lyon), now AriC, and CACAO (LORIA), now Caramel.

@ Written in C (ISO 4+ optional extensions); based on GMP (mpn/mpz).
@ Licence: LGPL (version 3 or later, for GNU MPFR 3).

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 5 /56

MPFR History

1998-2000
November 1998

Early 1999

9 June 1999
2000-2002
February 2000
June 2000
December 2000
2003-2005
2004
September 2005
October 2005

ARC INRIA Fiable.

Foundation text (Guillaume Hanrot, Jean-Michel Muller,
Joris van der Hoeven, Paul Zimmermann).

First lines of code (G. Hanrot, P. Zimmermann).

First commit into CVS (later, SVN).

ARC AOC (Arithmétique des Ordinateurs Certifiée).

First public version.

Copyright assigned to the Free Software Foundation.

Vincent Lefévre joins the MPFR team.

Patrick Pélissier (in particular, optimization in small precision).
GNU Fortran uses MPFR (evaluation of constant expressions).
v2.2.0 (shared library, TLS support). [60094 lines]

The MPFR team won the Many Digits Friendly Competition.

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon)

Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 6 /56

MPFR History [2]

August 2007
2007-2009
October 2007
March 2008
January 2009
March 2009
June 2009
June 2010
October 2011
777 2014

v2.3.0 (shared library enabled by default). [72177 lines]
Philippe Théveny.

CEA-EDF-INRIA School Certified Numerical Computation.
GCC 4.3.0 release: GCC now uses MPFR in its middle-end.
v2.4.0 (now a GNU package). [83771 lines]

MPFR switches to LGPL v3+ (trunk, for MPFR 3.x).
Certified Numerical Computation 2 Summer School.

v3.0.0 (API clean-up). [90744 lines]

v3.1.0 (TLS enabled by default if supported). [95132 lines]
v3.2.0 (mini-gmp support, export/import). [> 101600 lines]

Other contributions: Sylvie Boldo, David Daney, Mathieu Dutour, Laurent Fousse,
Emmanuel Jeandel, Fabrice Rouillier, Kevin Ryde, and others.

More: http://www.mpfr.org/history.html

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 7 /56

http://www.mpfr.org/history.html

Why MPFR?

In general, exact computations on real numbers are not possible: they would be
far too slow or even undecidable.

A floating-point arbitrary-precision system allows a large range and high precision.
Criteria:

@ performance (time and memory);

@ accuracy, correctness®, and consistency;

@ portability;

o reproducibility of the results (on different platforms, with different software).
Some compromise between the performance and the other criteria.
MPFR focuses on the last 3 criteria, while still being very efficient.

A new criterion: emulation of other arithmetics, say IEEE 754, i.e. not just for
multiple precision.

IA %ulp error bound is not enough, see 14.0/7.0 on old Cray machines!

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 8 /56

Example: sin(10%)

|

Environment

Computed value of sin 10%?

|

Exact result

—0.8522008497671888017727 . ..

MPFR (53 bits)

—0.85220084976718879

Glibc 2.3.6 / x86

0.46261304076460175

Glibc 2.3.6 / x86_64

—0.85220084976718879

Mac OS X 10.4.11 / PowerPC

—0.85220084977909205

Maple 10 (Digits = 17)

—0.85220084976718880

Mathematica 5.0 (x867) 0.462613
MuPAD 3.2.0 —0.9873536182
HP 700 0.0
HP 375, 425t (4.3 BSD) —0.65365288......
Solaris/SPARC —0.852200849. ..
IBM 3090/600S-VF AIX 370 0.0

PC: Borland TurboC 2.0

4.67734e—240

Sharp EL5806

—0.090748172

Note: 1022 = 522 x 222 and 5% fits on 53 bits.

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon)

Introduction to the GNU MPFR Library

GdT AriC, 2014-04-22

9/56

MPFR Program to Compute sin(10?2)

#include <stdio.h> /x for mpfr_printf, before #include <mpfr.h> */
#include <assert.h>

#include <gmp.h> /* optional, automatically done by mpfr.h */
#include <mpfr.h>

int main (void)
{
mpfr_t x; int inex;
mpfr_init2 (x, 53); /* x: 53-bit precision */
inex = mpfr_set_ui (x, 10, MPFR_RNDN); assert (inex == 0);
inex = mpfr_pow_ui (x, x, 22, MPFR_RNDN); assert (inex == 0);
mpfr_sin (x, x, MPFR_RNDN);
mpfr_printf ("sin(10722) = J%.17Rg\n", x);
mpfr_clear (x);
return O;

}

Compile with: gcc -Wall -02 sinl10p22.c -o sinl0p22 -lmpfr -lgmp

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 10 / 56

Evaluating a Sine (from Glibc)

MPFR can be useful if one cannot rely on the standard C library. ..

at least for testing / debugging.

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 11 / 56

Evaluating a Sine (from Glibc): 1st Test

For all tests: GCC 4.4.3 and glibc 2.10.2 under Linux/x86_64 (Debian/sid).

double testl (void)
{
double x = D;
double x2, y;

X2 = X;
y = sin (x2);
return y;

}

compiled with: -02 -DD=2.522464e-1

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 12 / 56

Evaluating a Sine (from Glibc): 1st Test

For all tests: GCC 4.4.3 and glibc 2.10.2 under Linux/x86_64 (Debian/sid).

double testl (void)
{
double x = D;
double x2, y;

X2 = X;
y = sin (x2);
return y;

}

compiled with: -02 -DD=2.522464e-1

Result: 0.24957989804940911016 (correct)

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 12 / 56

Evaluating a Sine (from Glibc): 2nd Test

For all tests: GCC 4.4.3 and glibc 2.10.2 under Linux/x86_64 (Debian/sid).

double test2 (void)

{
volatile double x = D;
double x2, y;

X2 = X;
y = sin (x2);
return y;

}

compiled with: -02 -DD=2.522464e-1 (like test1)

testl: 0.24957989804940911016 (correct)

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 13 / 56

Evaluating a Sine (from Glibc): 2nd Test

For all tests: GCC 4.4.3 and glibc 2.10.2 under Linux/x86_64 (Debian/sid).

double test2 (void)

{
volatile double x = D;
double x2, y;

X2 = X;
y = sin (x2);
return y;

}

compiled with: -02 -DD=2.522464e-1 (like test1)

testl: 0.24957989804940911016 (correct)
Result: 0.24957989804940913792

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 13 / 56

Evaluating a Sine (from Glibc): 3rd Test

double test3 (void)

{
volatile double x = D, z;
double x2, y;

X2 = Xx;

y = sin (x2);
z = cos (x2);
return y,;

3

compiled with: -02 -DD=1e22 (note the new value of D)

Results:
testl: —0.85220084976718879499
test2: —0.85220084976718879499

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 14 / 56

Evaluating a Sine (from Glibc): 3rd Test

double test3 (void)

{
volatile double x = D, z;
double x2, y;

X2 = Xx;

y = sin (x2);
z = cos (x2);
return y,;

3

compiled with: -02 -DD=1e22 (note the new value of D)

Results:

testl: —0.85220084976718879499
test2: —0.85220084976718879499
test3: 0.46261304076460174617

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 14 / 56

Evaluating a Sine (from Glibc): The Explanations

@ testl: The variable x has a constant value (and known at compile time), so
does x2, and GCC can evaluate the expression sin(x2). As of version 4.3.0,
GCC uses MPFR, which provides correct rounding.

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 15 / 56

http://sourceware.org/bugzilla/show_bug.cgi?id=10709

Evaluating a Sine (from Glibc): The Explanations

@ testl: The variable x has a constant value (and known at compile time), so
does x2, and GCC can evaluate the expression sin(x2). As of version 4.3.0,
GCC uses MPFR, which provides correct rounding.

@ test2: Due to the volatile qualifier, GCC does not perform the above
optimization (assuming possible side effects). The sin() function is called.
At run time, this function is provided by the glibc math library, based (in
64-bit mode) on IBM's MathLib, which provides correct rounding.

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 15 / 56

http://sourceware.org/bugzilla/show_bug.cgi?id=10709

Evaluating a Sine (from Glibc): The Explanations

@ testl: The variable x has a constant value (and known at compile time), so
does x2, and GCC can evaluate the expression sin(x2). As of version 4.3.0,
GCC uses MPFR, which provides correct rounding.

@ test2: Due to the volatile qualifier, GCC does not perform the above
optimization (assuming possible side effects). The sin() function is called.
At run time, this function is provided by the glibc math library, based (in
64-bit mode) on IBM's MathLib, which provides correct rounding.

But there is a bug for 0.25 < |x| < 0.855469, due to incorrect error analysis
(found by Paul Zimmermann, glibc bug 10709).

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 15 / 56

http://sourceware.org/bugzilla/show_bug.cgi?id=10709

Evaluating a Sine (from Glibc): The Explanations

@ testl: The variable x has a constant value (and known at compile time), so
does x2, and GCC can evaluate the expression sin(x2). As of version 4.3.0,
GCC uses MPFR, which provides correct rounding.

@ test2: Due to the volatile qualifier, GCC does not perform the above
optimization (assuming possible side effects). The sin() function is called.
At run time, this function is provided by the glibc math library, based (in
64-bit mode) on IBM's MathLib, which provides correct rounding.

But there is a bug for 0.25 < |x| < 0.855469, due to incorrect error analysis
(found by Paul Zimmermann, glibc bug 10709).

@ test3: The optimization is still not possible, but GCC notices that both
sin() and cos() are called on the same value x2 (not volatile), and calls
the sincos () function, assuming the glibc math library will be used (indeed,
sincos() is a GNU extension). This function, not provided by MathLib, is
implemented by the fsincos x87 instruction.

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 15 / 56

http://sourceware.org/bugzilla/show_bug.cgi?id=10709

Representation and Computation Model

Extension of the IEEE-754 standard to the arbitrary precision:
@ Radix 2, precision p > 2 associated with each MPFR number.

@ Format of normal numbers: £0.1bybs ... by 2% with Enin < e < Enax
——

p bits
(Emin and Enax are chosen by the user, 1 — 230 and 230 — 1 by default).

@ No subnormals, but can be emulated with mpfr_subnormalize.
@ Special MPFR data: +0, oo, NaN (only one kind, similar to sNaN).

@ Correct rounding in the 4 rounding modes of IEEE 754-1985:
Nearest-even, Downward, Upward, toward Zero.

Also supports: Away from zero (new in MPFR 3.0.0).

@ Correct rounding in any precision for any function. More than the accuracy,
needed for reproducibility of the results and for testing arithmetics.
Note: Before MPFR 3.1.0, the results of the random functions depended on
the platform (32-bit / 64-bit). This is no longer the case.

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 16 / 56

Caveats

o Correct rounding, variable precision and special numbers
— noticeable overhead in very small precisions.

@ Correct rounding — much slower
on (mostly rare) “bad” cases (due
to the Table Maker's Dilemma),
but slightly slower in average.
Ziv's strategy in MPFR:

> first evaluate the result with
slightly more precision (m)
than the target (p);

» if rounding is not possible,
then m < m+ (32 or 64),
and recompute; rounded

result p

» for the following failures: <
m<— m+ |m/2].

m=7?

@ Huge exponent range and meaningful results — functions sin, cos and tan
on huge arguments are very slow and take a lot of memory.

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 17 / 56

Exceptions (Global/Per-Thread Sticky Flags)

Invalid The MPFR (floating-point) result is not defined (NaN).
Ex.: 0/0, log(—17), but also mpfr_set on a NaN.

DivideByZero a.k.a. Infinitary (LIA-2). An exact infinite result is defined for a
function on finite operands.

Ex.: 1/40, log(40).
Overflow The exponent of the rounded result with unbounded exponent
range would be larger than E ..
Ex.: 2Fma and even mpfr_set (y,x,MPFR_RNDU) with
x = nextbelow(+00) and prec(y) < prec(x).
Underflow The exponent of the rounded result with unbounded exponent
range would be smaller than E;,.
Ex.: If Eqin = —17, underflow occurs with 0.1e-17 / 2 and
0.11e-17 - 0.1e-17 (no subnormals).
Inexact The returned result is different from the exact result.
Erange Range error when the result is not a MPFR datum.
Ex.: mpfr_get_ui on negative value, mpfr_cmp on (NaN, x).

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 18 / 56

The Ternary Value

Most functions that return a MPFR number as a result (pointer passed as the first
argument) also return a value of type int, called the ternary value:

= 0 The value stored in the destination is exact (no rounding) or NaN.

> 0 The value stored in the destination is greater than the exact result.

< 0 The value stored in the destination is less than the exact result.

When not already set, the inexact flag is set if and only if the ternary value is
nonzero.

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 19 / 56

Some Differences Between MPFR and |IEEE 754

No subnormals in MPFR, but can be emulated with mpfr_subnormalize.
e MPFR has only one kind of NaN (behavior is similar to signaling NaNs).
@ No DivideByZero exception before MPFR 3.1.

@ The Invalid exception is a bit different (see NaNs).

e Memory representation is different, but the mapping of a bit string (specified
by IEEE 754) into memory is implementation-defined anyway.

@ Some operations are not implemented.

@ And other minor differences. ..

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 20 / 56

Memory Handling

o Type mpfr_t: typedef __mpfr_struct mpfr_t[1];

» when a mpfr_t variable is declared, the structure is automatically allocated
(the variable must still be initialized with mpfr_init2 for the significand);

> in a function, the pointer itself is passed, so that in mpfr_add(a,b,c,rnd),
the object *a is modified;

> associated pointer: typedef __mpfr_struct *mpfr_ptr;

® MPFR numbers with more precision can be created internally.
Warning! Possible crash in extreme cases (like in most software).

@ Some MPFR functions may create caches, e.g. when computing constants
such as 7. Caches can be freed with mpfr_free_cache.

e MPFR internal data (exception flags, exponent range, caches...) are either
global or per-thread (if MPFR has been built with TLS support).

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 21 /56

Logging

When MPFR has been built with —enable-logging (on supported platforms),
environment variables can be defined for logging:

MPFR_LOG_FILE Name of the log file (default: mpfr.log).
MPFR_LOG_PREC Number of digits of the output (default: 6).
MPFR_LOG_LEVEL Max recursive level (default: 7).
MPFR_LOG_INPUT Log the function input.
MPFR_LOG_OUTPUT Log the function output.
MPFR_LOG_TIME Log the time spent inside the function.
MPFR_LOG_INTERNAL Log some particular variables if any.
MPFR_LOG_MSG Log the messages if any.
MPFR_LOG_ZIV Log what the Ziv loops do.
MPFR_LOG_STAT Log how many times a Ziv loop failed.
MPFR_LOG_ALL Log everything.

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 22 / 56

Output Functions

Simple output

Formatted output

mpfr_fprintf, mpfr_printf

To file mpfr_out_str
To string mpfr_get_str mpfr_sprintf
MPFR version old 240
Locale-sensitive yes (2.2.0) yes
2 to 36 (2.x)
Base 2 to 62 (3.x) 2,10, 16

Read-back exactly

yes (prec = 0)

yes? (empty precision field)

Efficiency

before MPFR 3.1.0,
very slow in base 10

2Except for the conversion specifier g (or G) — documentation of MPFR 2.4.1 is incorrect.

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon)

Introduction to the GNU MPFR Library

GdT AriC, 2014-04-22

23 / 56

Simple Output (mpfr_out_str, mpfr_get_str)

size_t mpfr_out_str (FILE *stream, int base, size_t n,
mpfr_t op, mp_rnd_t rnd)

Base b: from 2 to 62 (from 2 to 36 before MPFR 3.0.0).

Precision n: number of digits or 0. If n=0:

@ The number of digits m is chosen large enough so that re-reading the printed
value with the same precision, assuming both output and input use rounding
to nearest, will recover the original value of op.

@ More precisely, if p is the precision of op, then m =1+ [p.log(2)/ log(b)],
and m=1+ [(p—1).log(2)/log(b)] when b is a power of 2 (it has been
checked that these formulas are computed exactly for practical values of p).
See: David W. Matula, In-and-Out Conversions, CACM, 1968.

Output to string: mpfr_get_str (on which mpfr_out_str is based).

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 24 / 56

http://dx.doi.org/10.1145/362851.362887

Formatted Output Functions (printf-like)

Conversion specification:

% [flags] [width] [.[precision]] [type] [rounding] conv

Examples (32-bit x ~ 10000/81 ~ 123.45679012):

mpfr_printf ("%4Rf %.6RDe %.6RUe\n", x, x, x);
> 123.45679012 1.234567e+02 1.234568e+02
mpfr_printf ("%11.1RxA\n", MPFR_RNDD, x);
> 0X7.BP+4
mpfr_printf ("%.*Rb\n", 6, x);
> 1.111011p+6
mpfr_printf ("%.9Rg %#.9Rg\n", x, x);
> 123.45679 123.456790
mpfr_printf ("%#.*R*g %#.9g\n", 8, MPFR_RNDU, x, 10000./81.);
> 123.45680 123.456790

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 25 / 56

Test of MPFR (make check)

In the GCC development mailing-list, on 2007-12-29:
http://gcc.gnu.org/ml/gcc/2007-12/msg00707 . html

> On 29 December 2007 20:07, Dennis Clarke wrote:

>

>>

>> Do you have a testsuite ? Some battary of tests that can be thrown at the
>> code to determine correct responses to various calculations, error

>> conditions, underflows and rounding errors etc etc ?

>

> There’s a "make check" target in the tarball. I don’t know how thorough

> it is.

That is what scares me.

Dennis

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 26 / 56

http://gcc.gnu.org/ml/gcc/2007-12/msg00707.html

Test of MPFR (make check) [2]

Exhaustive testing is not possible.
— Particular and generic tests (random or not).

o Complete branch coverage (or almost), but not sufficient.

@ Function-specific or algorithm-specific values and other difficulties
(e.g., based on bugs that have been found).
@ Bug found in some function.

@ Corresponding particular test added.
© Analysis:
* Reason of the bug?

* Can a similar bug be found somewhere else in the MPFR code
(current or future)?

@ Corresponding generic test(s) added.
@ Tests with various gcc options, with valgrind.

In addition to make check, potential bugs detected by mpfrlint.

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 27 / 56

What Is Tested

Special data in input or output: NaN, infinities, £0.

@ Inputs that yield exceptions, exact cases, or midpoint cases in
rounding-to-nearest.

@ Discontinuity points.

@ Bit patterns: for some functions (arithmetic operations, integer power),
random inputs with long sequence of 0's and/or 1's.

@ Thresholds: hard-to-round cases, underflow/overflow thresholds (currently for
a few functions only).

o Extreme cases: tiny or huge input values.
@ Reuse of variables (reuse.c), e.g. in mpfr_exp(x,x,rnd).
@ The influence of previous data: exception flags, sign of the output variable.

o Weird exponent range, e.g. [17,59].

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 28 / 56

The Generic Tests (tgeneric.c)

Basic Principle

A function is first evaluated on some input x in some target precision p + k, and if
one can deduce the result in precision p (i.e., the TMD does not occur), then one
evaluates f on the same input x in the target precision p, and compare the results.

@ The precision p and the inputs are chosen randomly (in some ranges).
Special values (tiny and huge inputs) can be tested too.

Functions with 2 inputs (possibly integer) are supported.
The exceptions are supported (with a consistency test of flags and values).
The ternary value is checked.

The evaluations can be performed in different flag contexts (to check the
sensitivity to the flags).

An evaluation can be redone in an extremely reduced exponent range.
@ In the second evaluation, the precision of the inputs can be increased.
@ The exponent range is checked at the end (bug if not restored).

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 29 / 56

Testing Bad Cases for Correct Rounding (TMD)

@ Small-precision worst cases found by exhaustive search (in practice, in double
precision), by using function data_check of tests.c. These worst cases are
currently not in the repository. Each hard-to-round case is tested

> in rounding-to-nearest, in target precision p — 1,
> in all the directed rounding modes in target precision p,

where p is the minimal precision of the corresponding breakpoint.

@ Random hard-to-round cases (when the inverse function is implemented),
using the fact that the input can have more precision than the output
(function bad_cases of tests.c):

@ A precision p, and a MPFR number y of precision p, are chosen randomly.

@ One computes x = f~*(y) in a precision p, = p, + k.
— In general, x is a bad case for f in precision p, for directed rounding modes
(and rounding-to-nearest for some smaller precision).

© One tests x in all the rounding modes (see above).

TODO: use Newton's iteration for the other functions?

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 30 / 56

Application 1: Test of Sum Sticky-Rounded

Algorithm OddRoundedAdd This algorithm returns the sum z = x + y

) rounded-to-odd (sticky-rounded):
function z = OddRoundedAdd(x, y) e ,)
d = RD(x + y); @ z if it is a machine number; otherwise
B — R 7 the value among RD(z) and RU(z)
o — RN(d+ u); whose least significant bit is a 1;
e =¢e x 0.5 { exact } @ equivalently, the significand truncated
z =(u—e)+d; {exact} on p — 1 bits + sticky bit.

The corresponding MPFR instructions:

mpfr_add (d, x, y, MPFR_RNDD);
mpfr_add (u, x, y, MPFR_RNDU);
mpfr_add (e, d, u, MPFR_RNDN);
mpfr_div_2ui (e, e, 1, MPFR_RNDN);
mpfr_sub (z, u, e, MPFR_RNDN);
mpfr_add (z, z, d, MPFR_RNDN);

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 31 /56

Application 1: Test of Sum Sticky-Rounded [2]

#include
#include
#include
#include

<stdio.h>
<stdlib.h>

<gmp.h>
<mpfr.h>

#define LIST x, y, d, u, e, z

int main
{
mpfr_t

(int argc, char **argv)

LIST;

mp_prec_t prec;
int pprec; /* will be prec - 1 for mpfr_printf */

prec =

pprec =

atoi (argv[1l);
prec - 1;

mpfr_inits2 (prec, LIST, (mpfr_ptr) 0);

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22

32 /56

Application 1: Test of Sum Sticky-Rounded [3]

if (mpfr_set_str (x, argv[2], O, MPFR_RNDN))
{
fprintf (stderr, "rndo-add: bad x value\n");
exit (1);
}
mpfr_printf ("x = %.*Rb\n", pprec, x);

if (mpfr_set_str (y, argv[3], O, MPFR_RNDN))
{
fprintf (stderr, "rndo-add: bad y value\n");
exit (1);
}
mpfr_printf ("y = %.*Rb\n", pprec, y);

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 33 /56

Application 1: Test of Sum Sticky-Rounded [4]

mpfr_add (d, x, y, MPFR_RNDD);
mpfr_printf ("d = %.*Rb\n", pprec, d);

mpfr_add (u, x, y, MPFR_RNDU);
mpfr_printf ("u = J%.*Rb\n", pprec, u);

mpfr_add (e, d, u, MPFR_RNDN);
mpfr_div_2ui (e, e, 1, MPFR_RNDN);
mpfr_printf ("e = %.*Rb\n", pprec, e);

mpfr_sub (z, u, e, MPFR_RNDN);
mpfr_add (z, z, d, MPFR_RNDN);
mpfr_printf ("z = %.*Rb\n", pprec, z);

mpfr_clears (LIST, (mpfr_ptr) 0);
return O;

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 34 / 56

Application 2: Test of the Double Rounding Effect

Arguments: dmax, target precision n, extended precision p (by default, p = n).

Return all the pairs of positive machine numbers (x, y) such that 1/2 <y < 1,
0 < Ex — E, < dmax, X — y is exactly representable in precision n and the results
of [on(op(x/y))] in the rounding modes toward 0 and to nearest are different.

#include <stdio.h>
#include <stdlib.h>
#include <mpfr.h>

#define PRECN x, y, z /* in precision n, t in precision p */

static unsigned long

eval (mpfr_t x, mpfr_t y, mpfr_t z, mpfr_t t, mpfr_rnd_t rnd)

{
mpfr_div (t, x, y, rnd); /* the division x/y in precision p */
mpfr_set (z, t, rnd); /* the rounding to the precision n */
mpfr_rint_floor (z, z, rnd); /* rnd shouldn’t matter */
return mpfr_get_ui (z, rnd); /* rnd shouldn’t matter */

}

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 35/ 56

Application 2: Test of the Double Rounding Effect [2]

int main (int argc, char *argv[])
{

int dmax, n, p;

mpfr_t PRECN, t;

if (argc != 3 && argc != 4)
{ fprintf (stderr, "Usage: divworst <dmax> <n> [<p> J\n");
exit (EXIT_FAILURE); }

dmax = atoi (argv[1]);
n = atoi (argv[2]);
p = argc == 3 ? n : atoi (argv[3]);
if (p < n)
{ fprintf (stderr, "p must be greater or equal to n\n");
exit (EXIT_FAILURE); }

mpfr_inits2 (n, PRECN, (mpfr_ptr) 0);
mpfr_init2 (t, p);

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 36 / 56

Application 2: Test of the Double Rounding Effect [3]

for (mpfr_set_ui_2exp (x, 1, -1, MPFR_RNDN);
mpfr_get_exp (x) <= dmax; mpfr_nextabove (x))
for (mpfr_set_ui_2exp (y, 1, -1, MPFR_RNDN);
mpfr_get_exp (y) == 0; mpfr_nextabove (y))
{

unsigned long rz, rn;

if (mpfr_sub (z, x, y, MPFR_RNDZ) != 0)
continue; /* x - y not representable in precision n */
rz = eval (x, y, z, t, MPFR_RNDZ);
rn = eval (x, y, z, t, MPFR_RNDN);
if (rz != rn)
mpfr_printf ("x = %.*#Rb ; y = %.*Rb ; Z: %lu ; N: lu\n",
n-1, x,n-1, y, rz, rn);

}

mpfr_clears (PRECN, t, (mpfr_ptr) 0);
return O;

}

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 37 / 56

Application 3: Continuity Test

Compute f(1/2) in some given (global) precision for
f(x) = (g(x)+ 1) — g(x) and g(x) = tan(mx).

#include <stdio.h>
#include <stdlib.h>
#include <mpfr.h>

int main (int argc, char *argv[])
{

mp_prec_t prec;

mpfr_t f, g;

if (argec !'= 2)
{
fprintf (stderr, "Usage: continuity2 <prec>\n");
exit (EXIT_FAILURE);
}

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 38 / 56

Application 3: Continuity Test [2]

prec = atoi (argv([1]);
mpfr_inits2 (prec, f, g, (mpfr_ptr) 0);

mpfr_const_pi (g, MPFR_RNDD);
mpfr_div_2ui (g, g, 1, MPFR_RNDD);
mpfr_tan (g, g, MPFR_RNDN);

mpfr_add_ui (f, g, 1, MPFR_RNDN);
mpfr_sub (f, f, g, MPFR_RNDN);
mpfr_printf ("g(1/2) = %-17Rg £(1/2) = %Rg\n", g, £);

mpfr_clears (f, g, (mpfr_ptr) 0);
return O;

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 39 / 56

Application 3: Continuity Test [3]

Precision 2 g(1/2) = 16 £(1/2) =0
Precision 3 g(1/2) = 14 £(1/2) = 2
Precision 4 g(1/2) = 14 £(1/2) =1
Precision 5 g(1/2) = 120 £(1/2) =0
Precision 6 g(1/2) = 120 £(1/2) =0
Precision 7 g(1/2) = 121 £(1/2) = 1
Precision 8 g(1/2) = 2064 £(1/2) =0
Precision 9 g(1/2) = 2064 £(1/2) = 0
Precision 10 g(1/2) = 2068 £(1/2) =0
Precision 11 g(1/2) = 2066 £(1/2) = 2
Precision 12 g(1/2) = 2067 £(1/2) = 1
Precision 13 g(1/2) = 4172 £(1/2) =1
Precision 14 g(1/2) = 8502 £(1/2) =1
Precision 15 g(1/2) = 17674 £(1/2) =1
Precision 16 g(1/2) = 38368 £(1/2) =1
Precision 17 g(1/2) = 92555 £(1/2) =1
Precision 18 g(1/2) = 314966 £(1/2) = 2

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 40 / 56

Application 3: Continuity Test [4]

Precision 19 g(1/2) = 314967 £(1/2) =1
Precision 20 g(1/2) = 788898 £(1/2) =1
Precision 21 g(1/2) = 3.18556e+06 £(1/2) =0
Precision 22 g(1/2) = 3.18556e+06 £(1/2) =1
Precision 23 g(1/2) = 1.32454e+07 £(1/2) = 2
Precision 24 g(1/2) = 1.32454e+07 £(1/2) =1
Precision 25 g(1/2) = 6.29198e+07 £(1/2) = 2
Precision 26 g(1/2) = 6.29198e+07 £(1/2) =1
Precision 27 g(1/2) = 1.00797e+09 £(1/2) =0
Precision 28 g(1/2) = 1.00797e+09 £(1/2) =0
Precision 29 g(1/2) = 1.00797e+09 £(1/2) = 2
Precision 30 g(1/2) = 1.00797e+09 £(1/2) =1
Precision 31 g(1/2) = 1.64552e+10 £(1/2) = 0
Precision 32 g(1/2) = 1.64552e+10 £(1/2) =0
Precision 33 g(1/2) = 1.64552e+10 £(1/2) = 0
Precision 34 g(1/2) = 1.64552e+10 £(1/2) =1
Precision 35 g(1/2) = 3.90115e+11 £(1/2) =0

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 41 / 56

Application 4: Proof of the Minimality of TwoSum

Based on the article On the computation of correctly-rounded sums, by
Peter Kornerup, Vincent Lefévre, Nicolas Louvet and Jean-Michel Muller,
IEEE Transactions on Computers, 2012.

Full version on http://hal.inria.fr/inria-00475279 [RR-7262 (2010)].

Algorithm TwoSum* e Floating-point system in radix 2.

s = RN(a+b) @ Correct rounding in rounding to nearest.

b = RN(s-a) @ Two finite floating-point numbers a and b.

& = bl/) — Assuming no overflows, this algorithm computes
gb z g%g:: 5/)) two floating-point numbers s and t such that:

ta RN, 4 5) s=RN(a+b) and s+t=a+b.

.

* due to Knuth and Mgller.

Is this algorithm minimal (number of operations + and —, and depth of
the computation DAG) in any precision p > 27

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 42 / 56

http://hal.inria.fr/inria-00475279

Application 4: Proof of the Minimality of TwoSum [2]

— Search for minimal algorithms.

For the number of operations (+ and —):

@ enumerate all the possible algorithms (DAGs labelled by the operators) with
at most n operations;

@ equivalent DAGs (through obvious transformations in the order of operations
and sign/add/sub changes) can be ordered, thus only one DAG can be kept;

@ test each algorithm on 3 well-chosen pairs of inputs in precision p by
comparing the result with the correct one;

@ reject the algorithm if a result does not match.

For the depth of the DAG:
@ build a single DAG containing all the possible nodes at depth at most d;

@ test the result of each node on 3 well-chosen pairs of inputs in precision p by
comparing it with the correct one;

@ take the maximum depth for which there is no match on the 3 pairs.

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 43 / 56

Application 4: Proof of the Minimality of TwoSum [3]

The number of possible precisions is infinite (or arbitrarily large).

The idea: choose the pairs of inputs in some form so that one can prove that a
counter-example in one precision yields a counter-example in all (large enough)

precisions.

Let us take € = ulp(1) = 2P and choose numbers of the form u + ve, where
u and v are small integers. Example of TwoSum on one of the pairs:

algorithm precision 12 precision 17 expr.
a 1000.00000001 | 1000.0000000000001 | 8 + 8¢
b 1.00000000011 | 1.0000000000000011 | 1 + 3¢
s = RN(a+b) | 1001.00000001 | 1001.0000000000001 | 9 + 8¢
b = RN(s — a) 1.00000000000 | 1.0000000000000000 | 1 + O«
a = RN(s—b') | 1000.00000001 | 1000.0000000000001 | 8 + 8¢
0p = RN(b—b’) | 0.00000000011 | 0.0000000000000011 | 0 + 3¢
0, = RN(a—2a') 0 0 0 + Oe
t = RN(é,+ dp) | 0.00000000011 | 0.0000000000000011 | 0 + 3&

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon)

Introduction to the GNU MPFR Library

GdT AriC, 2014-04-22

44 / 56

Application 4: Proof of the Minimality of TwoSum [4]

Chosen pairs after testing various ones, where 1 x denotes nextUp(x), i.e. the least
floating-point number that compares greater than x:

31:T8 b1:T31
a =11 by =18
3323 b3:T3

In precision p > 4, this gives:

a; = 8+ 8¢ by = 1+ 3¢
a = 1+5¢ b, = 8+8¢
a = 3 bs 3+42¢

Precisions 2 to 12 (or 11) are tested. Results in precisions p > 13 can be deduced
from the results in precision 12 (or 11).

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 45 / 56

Application 4: Proof of the Minimality of TwoSum [5]

Let us consider a computation DAG of maximum depth n. Here, n = 6. Assume
that p > n+ 6 (here, p > 12). We define: €, = ulp(1) = 2!~P. Main properties
that have been proved:

@ the value of any node of the DAG has the form u + ve,, where u and v are
“small” integers (|vep| < 1/2) that do not depend on the precision p;

@ since the integers u and v are small enough (see the full proof), two values
Uy + vigp and up + vaep, are equal if and only if uy = wo and vi = va.

Note: we know that the depth of a minimal algorithm is bounded by 5, so that we

could take n =5 (but spurious algorithms might be obtained if the test is done in
precision 11).

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 46 / 56

Application 4: Proof of the Minimality of TwoSum [6]

@ The minimal add/sub algorithm giving the correct result is TwoSum (that is,
with 6 operations); all the other equivalent algorithms reduce to TwoSum by
using trivial transformations.

Test on 33,467,556 DAGs.

@ For add/sub algorithms, the depth minimality for precision p > 4 is proved by
computing the 89,903,977 values of depth less or equal to 4 for each pair, in
precisions 4 to 12.

The proof of the minimality for precisions 2 and 3 needs a 4th pair to test:
» Precision 2: a4 =1 and by = 6.
> Precision 3: a4 =10 and by = 1.

— In precision p > 2, the depth is at least 5 (depth of TwoSum).

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 47 / 56

Timings

Source: http://www.mpfr.org/mpfr-3.1.0/timings.html

Maple Mathematica Sage GMP MPF MPFR PARI NTL CLN
commercial commercial GPL LGPL LGPL GPL GPL GPL
12.00 6.0.1 4.7 5.0.2 3.1.0 25.0 5.5.2 1.3.2
interactive interactive interactive library library library library library
100 digits Maple Mathematica Sage MPF MPFR Pari NTL CLN
mult 0.0020 0.0006 0.00056 0.00011 0.00013 0.00012 0.000367 0.00018
sqr 0.00051 0.00009 0.00010 0.00011 0.00015
div 0.0029 0.0017 0.00078 0.00031 0.00031 0.00034 0.00070 0.00049
sqrt 0.032 0.0018 0.00114 0.00056 0.00049 0.00049 0.00442 0.00067
exp 0.070 0.019 0.0098 na 0.0073 0.0106 0.069 0.0197
log 0.100 0.028 0.0172 na 0.0108 0.0117 0.386 0.0278
sin 0.131 0.017 0.0107 na 0.0074 0.0095 0.074 0.0253
cos 0.119 0.018 0.0075 na 0.0054 0.0085 0.082 0.0212
acos 0.450 0.053 0.062 na 0.045 0.028 na 0.033
atan 0.280 0.048 0.053 na 0.039 0.026 na 0.028
[gdt201404. tex 68929 2014-04-22 10:17:19Z vinci7/xviil
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 48 / 56

http://www.mpfr.org/mpfr-3.1.0/timings.html

Timings [2]

1000 digits Maple Mathematica Sage MPF MPFR Pari NTL CLN
mult 0.0200 0.007 0.0040 0.0036 0.0030 0.0035 0.0137 0.0037
sqr 0.0029 0.0024 0.0018 0.0024 0.0026
div 0.0200 0.015 0.0070 | 0.0041 0.0048 0.0060 0.0201 0.0080
sqrt 0.160 0.011 0.0061 0.0050 0.0047 | 0.0047 0.187 0.0063
exp 0.90 0.63 0.196 na 0.183 0.364 5.96 0.332
log 0.300 0.67 0.192 na 0.162 0.203 48.1 0.400
sin 1.89 0.41 0.200 na 0.167 0.310 6.78 0.291
cos 1.91 0.40 0.187 na 0.157 0.300 6.98 0.266
acos 2.50 0.82 0.77 na 0.36 0.73 na 0.49
atan 2.10 0.80 0.69 na 0.34 0.72 na 0.45
10000 digits Maple Mathematica Sage MPF MPFR Pari NTL CLN
mult 0.80 0.28 0.113 0.107 0.095 0.108 0.508 0.106
sqr 0.086 | 0.076 0.064 0.076 0.076
div 0.80 0.56 0.267 | 0.198 0.183 0.264 1.662 0.503
sqrt 3.70 0.36 0.183 | 0.178 0.176 0.176 20.48 0.295
exp 50.0 17.6 9.5 na 8.7 12.6 1560 13.6
log 20.0 15.9 7.7 na 7.1 8.2 16080 16.7
sin 93.0 44.4 17.3 na 15.4 21.7 1650 17.6
cos 92.0 44.4 17.0 na 15.5 21.6 7710 16.5
acos 87.0 91.2 28.9 na 15.2 31.1 na 28.6
atan 82.0 87.2 26.5 na 13.9 31.0 na 27.0

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon)

Introduction to the GNU MPFR Library

GdT AriC, 2014-04-22

49 / 56

The Future — Work in Progress

Already done in the MPFR trunk (not exhaustive):

Mini-gmp support. [PZ]

Export/import functions (portable and compact format).
Operations on groups of flags (IEEE 754-2008). [VL]
Conversions with GCC's __float128 type. [PZ]

Partial emulation of rounding to nearest-away. [PZ / PP]
Assertions: static assertions / MPFR_ASSUME (hints). [PP]
Better Automake 1.13 support. [VL]

Work in progress:

@ Shared caches for multithreading. [PP]

o Advanced mpfr_sum tests (with sequences of cancellations), new
specification (sign of exact zero), and new summation algorithm. [VL]

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 50 / 56

New mpfr_ sum Implementation

mpfr_sum: sum of n floating-point numbers (n > 0), each of them having its own
precision p; (0 < i < n), with correct rounding on p bits.

Current implementation: naive algorithm with the conventional Ziv test.
The problem: inputs with huge differences in magnitude, huge cancellations.
— Not enough memory, or takes too much time.
Proposed algorithm (April 2014):

@ Cases n < 1 handled separately.

e Addition by blocks (whose size is determined at each iteration), using the
two's-complement representation.

@ Use of two windows for the accumulation of partial sums, in order to limit
carry propagation in some particular cases.

@ Worst-case complexity in O(np + > p;)?

@ One can theoretically do better for the worst case, but this may not be
interesting in practice.

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 51 / 56

New mpfr_sum Implementation [2]

@ In a first pass, look at the exponent field of each input (fast); also track the
signs of Inf's and zeros.
— Detect the singular cases and determine the maximum exponent E,,x of
the n’ regular inputs.

©

Compute the truncated sum with mpn, in a window around the exponents
Emax + logy(n') to Emax — p — log,(n’). In the same loop over the inputs,
determine the E.ax for the next iteration (in case it is needed).

If applicable (see below), add both windows.
Determine the number of cancelled bits (by looking at the partial sum).
If the truncated sum is O, reiterate at (2).

If the error is too large, shift the truncated sum to the left of the window,
and reiterate at (2) with a second window (with p = shift count).

If only the sign of the error term is unknown, reiterate at (2) to compute it,
using a second window where the output precision p is 0.

© © 06000

Copy the rounded result to the destination.

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 52 / 56

New mpfr_sum Implementation [3]

The choice of the sign of the result when it is an exact zero. ..
@ Not specified by IEEE 754-2008 (not even correct rounding).

o |IEEE P1788 draft: —0 in roundTowardNegative, otherwise +0.
— Inconsistent with everything.

Current behavior (but unspecified):
e if n =0, then the result is +0 (this is consistent with mpfr_set_si/ui);

o if all the inputs have the same sign (i.e. all +0 or all —0), then the result has
the same sign as the inputs (for n = 1, this is consistent with mpfr_set);

@ otherwise, either because all inputs are zeros with at least a +0 and a —0, or
because some inputs are non-zero (but they cancel), then the result is +0.

Third rule: consistent with non-arithmetic functions, e.g. log(1) = +0, but
inconsistent with IEEE 754's rules for addition (—0 with MPFR_RNDD).
Proposed change for the third rule: —0 with MPFR_RNDD, otherwise 40, to be
consistent with mpfr_add for n = 2, and get the same result as a sequence of
2-ary exact additions.

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 53 / 56

Support

@ MPFR manual in info, HTML and PDF formats (if installed).

o MPFR web site: http://www.mpfr.org/ (manual, FAQ, patches...).

© MPFR project page: https://gforge.inria.fr/projects/mpfr/
(with Subversion repository).

@ Mailing-list mpfr@inria.fr with

» official archives: https://sympa.inria.fr/sympa/arc/mpfr;
» Gmane mirror: http://dir.gmane.org/gmane.comp.lib.mpfr.general.

25 messages per month in average.

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 54 / 56

http://www.mpfr.org/
https://gforge.inria.fr/projects/mpfr/
https://sympa.inria.fr/sympa/arc/mpfr
http://dir.gmane.org/gmane.comp.lib.mpfr.general

How To Contribute to GNU MPFR

Improve the documentation.

Find, report and fix bugs.

Improve the code coverage and/or contribute new test cases.
@ Measure and improve the efficiency of the code.

Contribute a new mathematical function.

» Assign (you or your employer) the copyright of your code to the FSF.
Mathematical definition, specification (including the special data).
Choose one or several algorithms (with error analysis).

Implementation: conform to ISO C89, C99, and GNU Coding Standards.
Write a test program in tests (see slides on the tests).

Write the documentation (mpfr.texi), including the special cases.

Test the efficiency of your implementation (optional).

Send your contribution as a patch (obtained with svn diff).

vV vyvYVvY VY VvYYwYy

More information: http://www.mpfr.org/contrib.html

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 55 / 56

http://www.mpfr.org/contrib.html

Other Projects Based on MPFR

GNU MPFR does not track the errors, though this is partly done internally to
implement correct rounding. Other software can be used for this purpose:

@ Norbert Miller's C++ package iRRAM implements an exact real arithmetic
(with limitations).

@ Alternatively, interval arithmetic can be used: MPFI. An exact value x is
represented by a pair (x,X) such that x € [x,X] (inf-sup representation).

For complex numbers: GNU MPC. Similar to MPFR, as if the real and imaginary
parts were computed separately, i.e.:

@ for each complex number, 2 precisions;

o for each operation, 2 rounding modes (packed: MPC_RNDxy macros, where
x and y respectively refer to the rounding of the real and imaginary parts)
and 2 ternary values (also packed, extraction with MPC_INEX_RE(t) and
MPC_INEX_IM(t) macros).

[gdt201404.tex 68929 2014-04-22 10:17:19Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library GdT AriC, 2014-04-22 56 / 56

	Introduction
	Introduction: Arbitrary Precision
	What About Accuracy and Reproducibility?

	Presentation of GNU MPFR, History
	GNU MPFR in a Few Words
	MPFR History

	Why MPFR?
	Example: sin(10^22)
	MPFR Program to Compute sin(10^22)
	Evaluating a Sine (from Glibc)

	MPFR Basics
	Representation and Computation Model
	Caveats
	Exceptions (Global/Per-Thread Sticky Flags)
	The Ternary Value
	Some Differences Between MPFR and IEEE 754
	Memory Handling
	Logging

	Output Functions
	Simple Output (mpfr_out_str, mpfr_get_str)
	Formatted Output Functions (printf-like)

	Test of MPFR (make check)
	What Is Tested
	The Generic Tests (tgeneric.c)
	Testing Bad Cases for Correct Rounding (TMD)

	Applications
	Application 1: Test of Sum Sticky-Rounded
	Application 2: Test of the Double Rounding Effect
	Application 3: Continuity Test
	Application 4: Proof of the Minimality of TwoSum

	Timings
	The Future – Work in Progress
	New mpfr_sum Implementation

	Conclusion
	Support
	How To Contribute to GNU MPFR
	Other Projects Based on MPFR

