
Proofs by Exhaustive Tests in Small Precision

Vincent LEFÈVRE

Arénaire, INRIA Grenoble – Rhône-Alpes / LIP, ENS-Lyon

GdT Arénaire, 2009-11-19

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

Outline

Optimality of Algorithm 2Sum

SIPE (Small Integer Plus Exponent)

Optimal DblMult Error Bound

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 2 / 26

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

Optimality of Algorithm 2Sum

Based on the article On the computation of correctly-rounded sums, by
Peter Kornerup, Vincent Lefèvre, Nicolas Louvet and Jean-Michel Muller,
19th IEEE Symposium on Computer Arithmetic (Arith-19), 2009.

Available on http://hal.inria.fr/inria-00367584.

Algorithm 2Sum*

s = RN(a + b)
b′ = RN(s − a)
a′ = RN(s − b′)
δb = RN(b − b′)
δa = RN(a − a′)
t = RN(δa + δb)

Floating-point system in radix 2.

Correct rounding in rounding to nearest.

Two finite floating-point numbers a and b.

→ Assuming no overflows, this algorithm computes
two floating-point numbers s and t such that:

s = RN(a + b) and s + t = a + b.

* due to Knuth and Møller.

Question: Is this algorithm optimal in any precision p ≥ 2?

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 3 / 26

http://hal.inria.fr/inria-00367584

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

Optimality: In What Sense? Under What Conditions?

Optimality in time, size, depth?

Simple model:

allowed operations: additions and subtractions;

optionally minNum, maxNum, minNumMag, maxNumMag (IEEE 754-2008):
◮ minNum and maxNum: minimum and maximum of 2 numbers;
◮ minNumMag (resp. maxNumMag): the number with the smaller (resp. larger)

magnitude, the minimum (resp. maximum) in case of equality;

all operations take the same time;

the first operation is RN(a + b), without significant loss of generality.

Other common (standard) operations are probably useless or equivalent (e.g. 2x).

→ Minimality in term of:

number of operations (sequential time);

depth (parallel time).

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 4 / 26

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

The Mag2Sum Algorithm

If we have minNumMag and maxNumMag, we can derive a smaller algorithm
from Fast2Sum:

Algorithm Mag2Sum

s = RN(a + b)
a′ = maxNumMag(a, b)
b′ = minNumMag(a, b)
z = RN(s − a′)
t = RN(b′ − z)

5 operations instead of 6;

depth 3 instead of 5.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 5 / 26

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

The Search for Minimal Algorithms

For the number of operations:

enumerate all the possible algorithms (DAGs labelled by the operators) with
at most n operations;

equivalent DAGs (through obvious transformations in the order of operations
and sign/add/sub changes) can be ordered, thus only one DAG can be kept;

test each algorithm on 3 or 4 well-chosen pairs of inputs in precision p by
comparing the result with the correct one;

reject the algorithm if a result does not match.

For the depth:

build a single DAG containing all the possible nodes at depth at most d ;

test the result of each node on 3 well-chosen pairs of inputs in precision p by
comparing it with the correct one;

take the maximum depth for which there is no match on the 3 pairs.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 6 / 26

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

The Problem of the Precision

The number of possible precisions is infinite (or arbitrarily large).

The idea: choose the pairs of inputs in some form so that one can prove that a
counter-example in one precision yields a counter-example in all (large enough)
precisions.

Let us take ε = ulp(1) = 21−p and choose numbers of the form u + vε, where
u and v are small integers. Example of 2Sum on one of the pairs:

algorithm precision 12 precision 17 expr.
a 1000.00000001 1000.0000000000001 8 + 8 ε
b 1.00000000011 1.0000000000000011 1 + 3 ε
s = RN(a + b) 1001.00000001 1001.0000000000001 9 + 8 ε
b′ = RN(s − a) 1.00000000000 1.0000000000000000 1 + 0 ε
a′ = RN(s − b′) 1000.00000001 1000.0000000000001 8 + 8 ε
δb = RN(b − b′) 0.00000000011 0.0000000000000011 0 + 3 ε
δa = RN(a − a′) 0 0 0 + 0 ε
t = RN(δa + δb) 0.00000000011 0.0000000000000011 0 + 3 ε

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 7 / 26

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

The Pairs of Input Numbers

Chosen after testing various pairs.

If ↑x denotes nextUp(x), the least floating-point number that compares greater
than x :

a1 = ↑8 b1 = ↑↑↑1
a2 = ↑↑↑↑↑1 b2 = ↑8
a3 = 3 b3 = ↑3
a4 = −a1 b4 = −b1

In precision p ≥ 4, this gives:

a1 = 8 + 8 ε b1 = 1 + 3 ε
a2 = 1 + 5 ε b2 = 8 + 8 ε
a3 = 3 b3 = 3 + 2 ε
a4 = −a1 b4 = −b1

Precisions 2 to 12 (or 11) are tested. Results in precisions p ≥ 13 can be deduced
from the results in precision 12 (or 11).

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 8 / 26

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

The Proof of the Equivalence in Any Precision p ≥ 12

Let us consider a computation DAG of maximum depth n. Here, n = 6. Assume
that p ≥ n + 6 (here, p ≥ 12). We define: εp = ulp(1) = 21−p. Main properties
to be proved:

the value of any node of the DAG has the form u + vεp, where u and v are
“small” integers (|vεp| < 1/2) that do not depend on the precision p;

since the integers u and v are small enough (see next slides), two values
u1 + v1εp and u2 + v2εp are equal if and only if u1 = u2 and v1 = v2.

Note: we know that the depth of a minimal algorithm is bounded by 5, so that we
could take n = 5 (but spurious algorithms might be obtained if the test is done in
precision 11).

Ordering: (u1, v1) < (u2, v2) if and only if u1 < u2 ∨ (u1 = u2 ∧ v1 < v2).

Because of the above properties, this will be equivalent to: u1 + v1εp < u2 + v2εp.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 9 / 26

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

The Proof of the Equivalence in Any Precision p ≥ 12 [2]

For each node with inputs ui + viεp and uj + vjεp, we define the pair (uk , ṽk) as
follows:

add: uk = ui + uj and ṽk = vi + vj

sub: uk = ui − uj and ṽk = vi − vj

minNum: (uk , ṽk) = min((ui , vi), (uj , vj))

maxNum: (uk , ṽk) = max((ui , vi), (uj , vj))

minNumMag: (uk , ṽk) is (ui , vi) if

|ui | < |uj | ∨ (ui = uj = 0 ∧ |vi | < |vj |) ∨
(|ui | = |uj | ∧ vi × sign(ui) < vj × sign(uj)) ∨
(|ui | = |uj | ∧ |vi | = |vj | ∧ (ui , vi) < (uj , vj)),

else (uj , vj)

maxNumMag: similar to minNumMag but changing the inequalities

and we define vk by: RN(uk + ṽkεp) = uk + vkεp.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 10 / 26

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

The Proof of the Equivalence in Any Precision p ≥ 12 [3]

Properties to be proved by induction on the depth d of a node:

The pair (uk , ṽk) represents the exact value uk + ṽkεp (i.e., the value of the
operation before rounding).

Unicity of the representation: |vk | εp < 1/2.

|uk | ≤ 2d+3 and |vk | ≤ 2d+3.

The values uk and vk are integers that do not depend on p.

The consequence of the first property will be that the pair (uk , vk) represents the
rounded value.

Any initial value (depth 0) has the form u + vεp, where u and v are integers that
do not depend on p, such that |u| ≤ 8 = 23 and |v | ≤ 8 = 23.

Also, |v | εp ≤ 23+1−p ≤ 2−n−2 < 1/2.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 11 / 26

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

The Proof of the Equivalence in Any Precision p ≥ 12 [4]

Assume that the properties are satisfied for both inputs (ui , vi) and (uj , vj) of the
node.

Proof of the first property, i.e. (uk , ṽk) represents the exact value uk + ṽkεp:
◮ addition: (ui + viεp) + (uj + vjεp) = (ui + uj) + (vi + vj)εp = uk + ṽkεp ;
◮ subtraction: (ui + viεp)− (uj + vjεp) = (ui − uj) + (vi − vj)εp = uk + ṽkεp ;
◮ minNum and maxNum: (u1, v1) < (u2, v2)⇔ u1 + v1εp < u2 + v2εp ;
◮ minNumMag and maxNumMag. . .

From the definition of uk for each operation, uk is an integer and one has:

|uk | ≤ 2 max(|ui | , |uj |).

Since the depth of each input is ≤ d − 1, it follows that

|uk | ≤ 2 · 2d−1+3 = 2d+3.

Moreover the definition of uk does not depend on p.

This proves the properties on uk .

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 12 / 26

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

The Proof of the Equivalence in Any Precision p ≥ 12 [5]

For the same reasons, |ṽk | ≤ 2d+3 and ṽk is an integer that does not depend
on p.

We need to prove that these properties are still satisfied after

rounding, i.e., for vk .

If uk = 0 (which does not depend on p), then vk = ṽk (since |ṽk | ≤ 2p),
which proves the properties.

Now let us assume that uk 6= 0.

Let E be the exponent of uk + ṽkεp, i.e.

2E ≤ |uk + ṽkεp| < 2E+1.

Since |ṽkεp| ≤ 2d+3+1−p ≤ 2n+4−p ≤ 1/2 and uk is an integer, E depends
only on uk and the sign of ṽk (it is the exponent of uk , minus 1 if |uk | is a
power of 2 and uk ṽk < 0); thus E does not depend on p.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 13 / 26

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

The Proof of the Equivalence in Any Precision p ≥ 12 [6]

The significand of uk + ṽkεp as a number in
[

2p−1, 2p
[

is

(uk + ṽkεp)2p−1−E = uk2p−1−E + ṽk2−E .

The rounding of uk + ṽkεp to uk + vkεp can be defined as the rounding of
its significand to an integer (which will be equal to uk2p−1−E + vk2−E).

Since 2E ≤ |uk | ≤ 2d+3, one has 2p−1−E ≥ 2p−1−d−3 ≥ 2, so that uk2p−1−E

is an even integer, thus will not have any influence on the relative rounding
error, defined as δ = (ṽk − vk)2−E .

If {x} denotes the nonnegative fractional part of x , then δ =
{

ṽk2−E
}

−∆,
where ∆ = 0 if the rounding is done downward and ∆ = 1 if the rounding is
done upward; by definition of the rounding-to-nearest with the even rounding
rule, ∆ = 1 if and only if one of the following two conditions holds:

◮

{

ṽk2−E
}

> 1/2;

◮

{

ṽk2−E
}

= 1/2 and
⌊

ṽk2−E
⌋

is an odd integer.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 14 / 26

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

The Proof of the Equivalence in Any Precision p ≥ 12 [7]

As ṽk and E do not depend on p, the value of δ does not depend on p,
and the value of vk does not depend on p either.

Moreover vk2−E =
⌊

ṽk2−E
⌋

or
⌈

ṽk2−E
⌉

, so that vk is an integer.

And since |ṽk | ≤ 2d+3 and E ≤ d + 3, it follows that
∣

∣ṽk2−E
∣

∣ ≤ 2d+3−E ,
which is an integer. Hence

∣

∣vk2−E
∣

∣ ≤ 2d+3−E , and

|vk | ≤ 2d+3, then |vk | εp ≤ 2d+3+1−p ≤ 2−2 < 1/2.

Assume that an algorithm A (or computation tree) is excluded for some precision
p ≥ 12 because on some input pair (ap, bp), A does not yield the expected result
tp = ap + bp − RN(ap + bp) = u + vεp.

Let t ′p = u′ + v ′εp be the obtained result by running A.

By hypothesis, t ′p 6= tp, so that (u′, v ′) 6= (u, v). And since in a precision q ≥ 12,
any real can have at most one (u, v) representation satisfying |v | εq < 1/2,
(u′, v ′) 6= (u, v) implies t ′q = u′ + v ′εq 6= u + vεq = tq.

Thus A must be excluded for precision q.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 15 / 26

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

Minimality of the size in precision p ≥ 2

The minimal add/sub algorithm giving the correct result is 2Sum (that is,
with 6 operations); all the other equivalent algorithms reduce to 2Sum by
using trivial transformations.

Test on 33,467,556 DAGs (first 3 pairs only).

The only minimal add/sub/minNum/maxNum algorithm giving the correct
result is 2Sum, i.e. minNum and maxNum are useless here.

Test on 308,124,270 DAGs.

The only minimal add/sub/minNum/maxNum/minNumMag/maxNumMag
algorithm giving the correct result is Mag2Sum (5 operations).

Test on 9,274,728 DAGs.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 16 / 26

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

Minimality of the depth in precision p ≥ 2

For add/sub algorithms, the minimality for precision p ≥ 4 is proved by computing
the 89,903,977 values of depth less or equal to 4 for each of the first 3 pairs, in
precisions 4 to 12.

The proof of the minimality for precisions 2 and 3 needs a 4th pair to test:

Precision 2: a4 = 1 and b4 = 6.

Precision 3: a4 = 10 and b4 = 1.

→ In precision p ≥ 2, the depth is at least 5 (depth of 2Sum).

If minNum, maxNum, minNumMag and maxNumMag are allowed, let us consider
a domain for which all the operations are exact (e.g., a and b are small integers),
so that the expression without the rounding must be mathematically equivalent to
0; a and b must also both appear in the expression. Impossible at depth 2.
→ Thus the depth is at least 3 (depth of Mag2Sum).

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 17 / 26

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

SIPE (Small Integer Plus Exponent)

Correct rounding provided by:

most processors, fast but only in 24, 53 and 64 bits;

MPFR, but slow in small precision because of overhead due to generic
precision.

→ Specific library for the small precisions: SIPE (Small Integer Plus Exponent).

Idea based on DPE (Double Plus Exponent) by Paul Zimmermann and
Patrick Pélissier: a header file (.h) providing the arithmetic, where a finite
FP number is represented by a pair of integers (i , e), with the value i · 2e .

Focus on efficiency:
◮ exceptions are ignored and unsupported inputs are not detected;
◮ restriction: the precision must be small enough to have a simple and fast

implementation, without taking integer overflow cases into account. The
maximal precision is deduced from the implementation (and the platform).

Currently only the rounding attribute roundTiesToEven (rounding to nearest
with the even rounding rule) is implemented.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 18 / 26

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

SIPE: Provided Functions

Header file sipe.h providing:

a macro SIPE_ROUND(X,PREC), to round and normalize any pair (i , e);

initialization: via SIPE_ROUND or sipe_set_si;

sipe_neg, sipe_add, sipe_sub, sipe_add_si, sipe_sub_si;

sipe_nextabove and sipe_nextbelow;

sipe_mul, sipe_mul_si;

sipe_fma and sipe_fms (optional, see below);

sipe_eq, sipe_ne, sipe_le, sipe_lt, sipe_ge, sipe_gt;

sipe_min, sipe_max, sipe_minmag, sipe_maxmag, sipe_cmpmag;

sipe_outbin, sipe_to_int, sipe_to_mpz.

Bound on the precision:

FMA/FMS 32-bit integers 64-bit integers

No 15 31

Yes 10 20

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 19 / 26

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

SIPE: Implementation of Some Simple Operations

typedef struct { sipe_int_t i; sipe_exp_t e; } sipe_t;

static inline sipe_t sipe_neg (sipe_t x, int prec)

{ return (sipe_t) { - x.i, x.e }; }

static inline sipe_t sipe_set_si (sipe_int_t x, int prec)

{ sipe_t r = { x, 0 };

SIPE_ROUND (r, prec);

return r; }

static inline sipe_t sipe_mul (sipe_t x, sipe_t y, int prec)

{ sipe_t r;

r.i = x.i * y.i;

r.e = x.e + y.e;

SIPE_ROUND (r, prec);

return r; }

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 20 / 26

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

SIPE: Implementation of the Addition and Subtraction

#define SIPE_DEFADDSUB(OP,ADD,OPS) \

static inline sipe_t sipe_##OP (sipe_t x, sipe_t y, int prec) \

{ sipe_exp_t delta = x.e - y.e; \

sipe_t r; \

if (SIPE_UNLIKELY (x.i == 0)) \

return (ADD) ? y : (sipe_t) { - y.i, y.e }; \

if (SIPE_UNLIKELY (y.i == 0) || delta > prec + 1) \

return x; \

if (delta < - (prec + 1)) \

return (ADD) ? y : (sipe_t) { - y.i, y.e }; \

r = delta < 0 ? \

((sipe_t) { (x.i) OPS (y.i << - delta), x.e }) : \

((sipe_t) { (x.i << delta) OPS (y.i), y.e }); \

SIPE_ROUND (r, prec); \

return r; }

SIPE_DEFADDSUB(add,1,+)

SIPE_DEFADDSUB(sub,0,-)

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 21 / 26

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

Timings of the Search For Minimal Algorithms

Timings of the search for minimal algorithms with:

the IEEE-754 double-precision arithmetic (binary64);

MPFR 2.4.2-dev with 12-bit precision;

SIPE with 12-bit precision.

Platform: Linux/x86_64 (3 GHz Pentium D).

Code compiled with GCC 4.3.4, using -O3 -march=native -std=c99.

Timings Ratios

Allowed operations double MPFR/12 SIPE/12 S/D M/S

add/sub 0.73 12.21 3.78 5.2 3.2

add/sub/min/max 8.79 91.95 27.33 3.1 3.4

all 6 operations 0.35 2.55 0.75 2.1 3.4

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 22 / 26

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

Optimal DblMult Error Bound

Algorithm DblMult defined in Computing correctly rounded integer powers in

floating-point arithmetic, by Peter Kornerup, Christoph Lauter, Vincent Lefèvre,
Nicolas Louvet and Jean-Michel Muller, to appear in Transactions on

Mathematical Software.

Research report on http://prunel.ccsd.cnrs.fr/ensl-00278430.

Algorithm DblMult(ah, aℓ, bh, bℓ)

[t1h, t1ℓ] = Fast2Mult(ah, bh)
t2 = RN(ahbℓ)
t3 = RN(aℓbh + t2)
t4 = RN(t1ℓ + t3)

[ch, cℓ] = Fast2Sum(t1h, t4)

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 23 / 26

http://prunel.ccsd.cnrs.fr/ensl-00278430

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

Optimal DblMult Error Bound [2]

Theorem (from the article)

Let ε = 2−p, where p ≥ 3 is the precision of the radix-2 floating-point system

used. If |aℓ| ≤ 2−p |ah| and |bℓ| ≤ 2−p |bh|, then the returned value [ch, cℓ] of

DblMult satisfies:

ch + cℓ = (ah + aℓ)(bh + bℓ)(1 + α) with |α| ≤ η,

where η = 7ε2 + 18ε3 + 16ε4 + 6ε5 + ε6.

Quasi-exhaustive tests in small precisions (3 to 8), i.e. with a bounded exponent,
using SIPE. → Conjectured form of the worst case.

Tests using this conjectured form in precisions 3 to 14, using SIPE.

→ Conjectured error bound |α| < 6ε2, asymptotically reached.

Proof: work in progress.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 24 / 26

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

DblMult: Quasi-Exhaustive Tests

$./dblmult 3 -

[...]

New worst case: (1.11e5,-1.10e2) * (1.11e5,-1.11e2)

|eta| = 146 / 2450

<= 1.1110100000101101001000111011111e-5 <= 5.9591836748e-2

bound 1.0011000001100010000000000000000e-3 (RNDZ) expected

$./dblmult 4 -

[...]

New worst case: (1.011e7,-1.010e3) * (1.101e7,-1.101e3)

|eta| = 626 / 32370

<= 1.0011110011011001001100110101110e-6 <= 1.9338894039e-2

bound 1.0000011000001100001000000000000e-5 (RNDZ) expected

$./dblmult 5 -

[...]

New worst case: (1.1011e9,-1.0111e4) * (1.0101e9,-1.0101e4)

|eta| = 2723 / 547491

<= 1.0100010111110011000111111010010e-8 <= 4.9735977410e-3

bound 1.1110010100000011000001000000000e-8 (RNDZ) expected

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 25 / 26

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

DblMult: Quasi-Exhaustive Tests – Bounds and Timings

Precision Bound (in binary) Timing

3 1.1110100000101101001000111011111 × 2−5 0

4 1.0011110011011001001100110101110 × 2−6 0

5 1.0100010111110011000111111010010 × 2−8 0

6 1.0110100111001110111010010011111 × 2−10 0

7 1.0110100010001011000100111110011 × 2−12 0.06

8 1.0111011011000000010111010100011 × 2−14 0.49

9 1.0111101010001011100011011110010 × 2−16 3.86

10 1.0111101110111000100000101001001 × 2−18 31.4

11 1.0111110011010000100100001111001 × 2−20 254

12 1.0111110111101111000110000001010 × 2−22 2055

13 1.0111111011001000110010100001111 × 2−24 16518

14 1.0111111100111111111010110101101 × 2−26 131522

Note: timings in seconds on a 2.2 GHz AMD Opteron.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Proofs by Exhaustive Tests in Small Precision GdT Arénaire, 2009-11-19 26 / 26

	Outline
	Optimality of Algorithm 2Sum
	Optimality: In What Sense? Under What Conditions?
	The Mag2Sum Algorithm
	The Search for Minimal Algorithms
	The Problem of the Precision
	The Pairs of Input Numbers
	The Proof of the Equivalence in Any Precision p >= 12
	Minimality of the size in precision p >= 2
	Minimality of the depth in precision p >= 2

	SIPE (Small Integer Plus Exponent)
	SIPE: Provided Functions
	SIPE: Implementation of Some Simple Operations
	SIPE: Implementation of the Addition and Subtraction
	Timings of the Search For Minimal Algorithms

	Optimal DblMult Error Bound
	DblMult: Quasi-Exhaustive Tests
	DblMult: Quasi-Exhaustive Tests -- Bounds and Timings

