SIPE: Small Integer Plus Exponent

Vincent LEFÈVRE

AriC, INRIA Grenoble – Rhône-Alpes / LIP, ENS-Lyon

Arith 21, Austin, Texas, USA, 2013-04-09
Introduction: Why SIPE?

All started with floating-point algorithms in radix 2, assuming correct rounding to nearest:

- **TwoSum**: to compute a rounded sum $x_h = \circ (a + b)$ and the error term x_ℓ;
- **DblMult**: accurate double-FP multiplication $(a_h, a_\ell) \times (b_h, b_\ell)$;
- **Kahan’s algorithm** to compute the discriminant $b^2 - ac$ accurately.

Valid with restrictions on the inputs, e.g.:

- no special datums (NaN, infinities);
- no non-zero tiny or huge values in order to avoid exceptions due to the bounded exponent range (overflow/underflow).

Questions about such algorithms: Correctness? Error bound? Optimality? ... The answer may be difficult to find, and exhaustive tests in some domain may help to solve the problem. We need a tool for that...

Introduction: Testing Floating-Point Algorithms

Exhaustive tests (in some domain) \(\rightarrow\) proofs or reachable error bounds.

Drawbacks:
- valid only for the considered FP system (the chosen precision);
- and this may be possible only in very low precisions.

Still useful:
- try to generalize the results \(\rightarrow\) conjectured error bounds or other properties for higher precisions;
- possibly leading to proofs;
- or counter-examples (in case of errors in pen-and-paper proofs).

No need to take into account special data and exceptions (or this could be optional if this doesn’t slow down the generic cases).
Introduction: Tools Existing Before SIPE

All of them in radix 2.

- GNU MPFR: correct rounding in any precision \(p \geq 2 \).
 OK concerning the behavior, but
 - very generic: not specifically optimized for a given precision;
 - we had to take into account that different precisions can even be mixed;
 - overhead due to exception handling and special data.
 → Cannot be as fast as specific software ignoring exceptions.

- GCC’s sreal internal library. But
 - no support for negative numbers;
 - rounding is roundTiesToAway: to nearest, but not the usual even-rounding rule for the halfway cases (rounded away from zero);
 - the precision is more or less hard-coded;
 - overflow detection, unnecessary in our context;
 - no FMA support (needed for DblMult);
 - apparently, not very optimized.
SIPE: Small Integer Plus Exponent

- Idea based on DPE (Double Plus Exponent) by Paul Zimmermann and Patrick Pélissier: a header file (.h) providing the arithmetic, where a finite floating-point number is represented by a pair of integers \((M, E)\), with the value \(M \cdot 2^E\).

- Focus on efficiency:
 - code written in C (for portability), with some GCC extensions;
 - exceptions (in particular overflows/underflows) are ignored, and unsupported inputs are not detected;
 - restriction: the precision must be small enough to have a simple and fast implementation, without taking integer overflow cases into account. The maximal precision is deduced from the implementation (and the platform).

- Currently only the rounding attribute roundTiesToEven (rounding to nearest with the even rounding rule) is implemented.
SIPE: Encoding

Chosen encoding:
- Structure of two native signed integers representing the pair \((M, E)\).
- If \(M \neq 0\) (i.e. \(x \neq 0\)), the representation is normalized: \(2^{p-1} \leq |M| \leq 2^p - 1\).
- If \(M = 0\), then we require \(E = 0\) (even though its real value doesn’t matter, we need to avoid integer overflows, e.g. when two exponents are added).

<table>
<thead>
<tr>
<th>FMA/FMS</th>
<th>32-bit integers</th>
<th>64-bit integers</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td>Yes</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

Bound on the precision:

Alternative encodings that could have been considered:
- packed in a single integer or separate significand sign;
- fixed-point representation (\(\rightarrow\) limited exponent range, unpractical);
- native floating-point format: native operations + Veltkamp’s splitting, with double-rounding effect detection (second Veltkamp’s splitting?). . . But this effect cannot occur for +, − and \(\times\) with small enough \(p\)!
SIPE: Implementation of Some Simple Operations

typedef struct { sipe_int_t i; sipe_exp_t e; } sipe_t;

static inline sipe_t sipe_neg (sipe_t x, int prec)
{ return (sipe_t) { - x.i, x.e }; }

static inline sipe_t sipe_set_si (sipe_int_t x, int prec)
{ sipe_t r = { x, 0 };
 SIPE_ROUND (r, prec);
 return r; }

static inline sipe_t sipe_mul (sipe_t x, sipe_t y, int prec)
{ sipe_t r;
 r.i = x.i * y.i;
 r.e = x.e + y.e;
 SIPE_ROUND (r, prec);
 return r; }
SIPE: Implementation of Addition and Subtraction

```c
#define SIPE_DEFADDSUB(OP,ADD,OPS) \
    static inline sipe_t sipe_###OP (sipe_t x, sipe_t y, int prec) \ 
    { sipe_exp_t delta = x.e - y.e; \ 
        sipe_t r; \ 
        if (SIPE_UNLIKELY (x.i == 0)) \ 
            return (ADD) ? y : (sipe_t) { - y.i, y.e }; \ 
        if (SIPE_UNLIKELY (y.i == 0) || delta > prec + 1) \ 
            return x; \ 
        if (delta < -(prec + 1)) \ 
            return (ADD) ? y : (sipe_t) { - y.i, y.e }; \ 
        r = delta < 0 ? \ 
            ((sipe_t) { (x.i) OPS (y.i << - delta), x.e }): \ 
            ((sipe_t) { (x.i << delta) OPS (y.i), y.e }); \ 
        SIPE_ROUND (r, prec); \ 
        return r; }

SIPE_DEFADDSUB(add,1,+)
SIPE_DEFADDSUB(sub,0,-)
```

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon)
SIPE: Provided Functions

Header file sipe.h providing:

- a macro `SIPE_ROUND(X,PREC)`, to round and normalize any pair \((i,e)\);
- initialization: via `SIPE_ROUND` or `sipe_set_si`;
- `sipe_neg`, `sipe_add`, `sipe_sub`, `sipe_add_si`, `sipe_sub_si`;
- `sipe_nextabove` and `sipe_nextbelow`;
- `sipe_mul`, `sipe_mul_si`, `SIPE_2MUL`;
- `sipe_fma` and `sipe_fms` (optional, see slide 6);
- `sipe_eq`, `sipe_ne`, `sipe_le`, `sipe_lt`, `sipe_ge`, `sipe_gt`;
- `sipe_min`, `sipe_max`, `sipe_minmag`, `sipe_maxmag`, `sipe_cmpmag`;
- `sipe_outbin`, `sipe_to_int`, `sipe_to_mpz`.

New (2013-04-07/08):
Second implementation, using the native floating-point encoding.

→ All the above functions except `sipe_fma` and `sipe_fms`.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon)
Example: Minimality of TwoSum in Any Precision

Full version on http://hal.inria.fr/inria-00475279 [RR-7262 (2010)].

Algorithm TwoSum*

- Floating-point system in radix 2.
- Correct rounding in rounding to nearest.
- Two finite floating-point numbers a and b.

→ Assuming no overflows, this algorithm computes two floating-point numbers s and t such that:

\[
s = RN(a + b) \quad \text{and} \quad s + t = a + b.
\]

* due to Knuth and Møller.

Is this algorithm minimal (number of operations $+$ and $-$, and depth of the computation DAG) in any precision $p \geq 2$?
Example: Minimality of TwoSum in Any Precision [2]

The idea: choose the pairs of inputs in some form so that one can prove that a counter-example in one precision yields a counter-example in all (large enough) precisions. Choices after testing various pairs, where $\uparrow x$ denotes $\text{nextUp}(x)$, i.e. the least floating-point number that compares greater than x:

\[
\begin{align*}
 a_1 &= \uparrow 8 & b_1 &= \uparrow^3 1 \\
 a_2 &= \uparrow^5 1 & b_2 &= \uparrow 8 \\
 a_3 &= 3 & b_3 &= \uparrow 3
\end{align*}
\]

In precision $p \geq 4$, this gives, where $\varepsilon = \text{ulp}(1) = 2^{1-p}$:

\[
\begin{align*}
 a_1 &= 8 + 8\varepsilon & b_1 &= 1 + 3\varepsilon \\
 a_2 &= 1 + 5\varepsilon & b_2 &= 8 + 8\varepsilon \\
 a_3 &= 3 & b_3 &= 3 + 2\varepsilon
\end{align*}
\]

Precisions 2 to 12 are tested. Results in precisions $p \geq 13$ can be deduced from the results in precision 12.
Gain by Using SIPE Instead of GNU MPFR?

Expected gain by using SIPE instead of GNU MPFR?

Timing of individual operations: could be interesting information, but in practice, one needs to consider the whole program.

Indeed, in real-world tests: need to process each SIPE final result, and this may take time.

For the proof of minimality (optimality) of TwoSum: rather fast.

- Pre-computation step: generation of all the algorithms (DAG’s).
- For each SIPE final result: 1 to 4 comparisons with constant values.
Gain by Using SIPE Instead of GNU MPFR? [2]

For the computation of error bounds, for each input:

1. Compute the FP result with SIPE. High speed-up here.
2. Compute the exact value or a good approximation.
3. Compare the results. For a relative error, needs a division.

One may think that (2) and (3), which cannot use SIPE, would take most of the time, so that the speed-up would remain limited. However...

- Case of an exhaustive search: if the function is numerically regular enough, the exact value might be determined very quickly from the previous one, like in the search for the hardest-to-round cases.
- But here, in very low precision, this may not work well, as input intervals contain much fewer FP values per binade.
- For (3): division not always needed (filtering, low precision, consecutive inputs...).
Timings

Example with “best” optimizations (Intel Xeon E5520, GCC 4.7.1 + LTO/PGO):

<table>
<thead>
<tr>
<th>args</th>
<th>g</th>
<th>timings (in seconds)</th>
<th>ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>double</td>
<td>MPFR</td>
</tr>
<tr>
<td>1 2 6</td>
<td>−</td>
<td>0.50</td>
<td>6.45</td>
</tr>
<tr>
<td>1 2 6</td>
<td>2</td>
<td>0.41</td>
<td>6.79</td>
</tr>
<tr>
<td>1 2 6</td>
<td>4</td>
<td>0.43</td>
<td>6.80</td>
</tr>
<tr>
<td>1 2 6</td>
<td>6</td>
<td>0.48</td>
<td>6.85</td>
</tr>
<tr>
<td>1 4 6</td>
<td>−</td>
<td>5.20</td>
<td>49.66</td>
</tr>
<tr>
<td>1 4 6</td>
<td>2</td>
<td>6.99</td>
<td>53.30</td>
</tr>
<tr>
<td>1 4 6</td>
<td>4</td>
<td>4.78</td>
<td>52.75</td>
</tr>
<tr>
<td>1 4 6</td>
<td>6</td>
<td>6.74</td>
<td>51.90</td>
</tr>
<tr>
<td>1 6 5</td>
<td>−</td>
<td>0.20</td>
<td>1.37</td>
</tr>
<tr>
<td>1 6 5</td>
<td>2</td>
<td>0.25</td>
<td>1.48</td>
</tr>
<tr>
<td>1 6 5</td>
<td>4</td>
<td>0.20</td>
<td>1.49</td>
</tr>
<tr>
<td>1 6 5</td>
<td>6</td>
<td>0.23</td>
<td>1.40</td>
</tr>
</tbody>
</table>
Timings [2]

The above timings:

- For the proof of the minimality of TwoSum (number of operations), i.e. only add/sub are currently tested.
- Thus include the overhead for the input data generation and the tests of the results.
- Tests with other GCC versions and other machines (see article).

From all these tests, the use of SIPE is

- between 1.2 and 6 times as slow as the use of the double C floating-point type, i.e. for \(p = 53 \) (incomplete for the proof in precisions \(p \leq 11 \));
- between 2 and 6 times as fast as the use of MPFR for precision 12.
Timings [3]

With the new version of SIPE on Intel Xeon E5520, GCC 4.7.2 (no LTO):

<table>
<thead>
<tr>
<th>args g</th>
<th>double</th>
<th>MPFR</th>
<th>SIPE/0</th>
<th>SIPE/1</th>
<th>SIPE/D</th>
<th>SIPE/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 6 —</td>
<td>0.54</td>
<td>8.88</td>
<td>2.02</td>
<td>2.04</td>
<td>0.53</td>
<td>0.92</td>
</tr>
<tr>
<td>1 2 6 2</td>
<td>0.40</td>
<td>8.78</td>
<td>1.69</td>
<td>1.72</td>
<td>0.54</td>
<td>0.82</td>
</tr>
<tr>
<td>1 2 6 4</td>
<td>0.38</td>
<td>8.83</td>
<td>1.84</td>
<td>1.86</td>
<td>0.50</td>
<td>0.85</td>
</tr>
<tr>
<td>1 2 6 6</td>
<td>0.44</td>
<td>9.01</td>
<td>1.86</td>
<td>1.84</td>
<td>0.48</td>
<td>0.89</td>
</tr>
<tr>
<td>1 4 6 —</td>
<td>5.19</td>
<td>64.44</td>
<td>14.85</td>
<td>14.67</td>
<td>5.61</td>
<td>12.18</td>
</tr>
<tr>
<td>1 4 6 2</td>
<td>7.92</td>
<td>67.49</td>
<td>14.57</td>
<td>14.50</td>
<td>8.42</td>
<td>12.45</td>
</tr>
<tr>
<td>1 4 6 4</td>
<td>6.52</td>
<td>65.78</td>
<td>15.64</td>
<td>16.05</td>
<td>7.13</td>
<td>11.73</td>
</tr>
<tr>
<td>1 4 6 6</td>
<td>7.00</td>
<td>65.84</td>
<td>15.20</td>
<td>15.40</td>
<td>7.08</td>
<td>12.99</td>
</tr>
<tr>
<td>1 6 5 —</td>
<td>0.19</td>
<td>1.73</td>
<td>0.41</td>
<td>0.40</td>
<td>0.20</td>
<td>0.40</td>
</tr>
<tr>
<td>1 6 5 2</td>
<td>0.31</td>
<td>1.94</td>
<td>0.43</td>
<td>0.41</td>
<td>0.32</td>
<td>0.42</td>
</tr>
<tr>
<td>1 6 5 4</td>
<td>0.28</td>
<td>1.89</td>
<td>0.48</td>
<td>0.50</td>
<td>0.28</td>
<td>0.40</td>
</tr>
<tr>
<td>1 6 5 6</td>
<td>0.27</td>
<td>1.76</td>
<td>0.45</td>
<td>0.45</td>
<td>0.26</td>
<td>0.44</td>
</tr>
</tbody>
</table>
Conclusion

SIPE (now Sipe): a “library” whose purpose is to do simple operations in binary floating-point systems in very low precisions with correct rounding to nearest.

Web page: http://www.vinc17.net/research/sipe/

Future work:

- Other applications, e.g. minimal DblMult error bound.
 → Pen-and-paper proof (currently almost done for most cases).
 → New timings, where multiplication is now involved.
- Try the floating-point solution. Done on 2013-04-08 except fma/fms.

In the long term, support for:

- other operations (e.g. division, square root);
- directed rounding;
- decimal arithmetic.