
en
sl

-0
01

50
40

6,
 v

er
si

on
 1

 -
 3

0
M

ay
 2

00
7

Computing Integer Powers in

Floating-Point Arithmetic

Peter Kornerup Vincent Lefèvre Jean-Michel Muller ∗

May 2007
This is LIP Research Report number RR2007-23

Ceci est le Rapport de Recherches numéro RR2007-23 du LIP

Laboratoire LIP, CNRS/ENS Lyon/INRIA/Univ. Lyon 1, Lyon, France.

Abstract

We introduce two algorithms for accurately evaluating powers to a positive inte-
ger in floating-point arithmetic, assuming a fused multiply-add (fma) instruction is
available. We show that our log-time algorithm always produce faithfully-rounded
results, discuss the possibility of getting correctly rounded results, and show that
results correctly rounded in double precision can be obtained if extended-precision is
available with the possibility to round into double precision (with a single rounding).

1 Introduction

We deal with the implementation of the integer power function in floating-point arith-
metic. In the following, we assume a radix-2 floating-point arithmetic that follows the
IEEE-754 standard for floating-point arithmetic. We also assume that a fused multiply-
and-add (fma) operation is available, and that the input as well as the output values of
the power function are not subnormal numbers, and are below the overflow threshold (so
that we can focus on the powering of the significands only).

An important case dealt with in the paper will be the case when an internal format,
wider than the target format, is available. For instance, to guarantee – in some cases –
correctly rounded integer powers in double precision arithmetic, we will have to assume
that a double-extended precision is available. The examples will consider that it has a
64-bit precision, which is the minimum required by the IEEE-754 standard.

The IEEE-754 standard [1] for radix-2 floating-point arithmetic (and its follower, the
IEEE-854 radix-independent standard [5]) require that the four arithmetic operations and
the square root should be correctly rounded. In a floating-point system that follows the
standard, the user can choose an active rounding mode from:

• rounding towards −∞: RD (x) is the largest machine number less than or equal to
x;

∗Peter Kornerup is with SDU, Odense, Denmark; Vincent Lefèvre and Jean-Michel Muller are with
Laboratoire LIP, CNRS/ENS Lyon/INRIA/Univ. Lyon 1, Lyon, France.

1

• rounding towards +∞: RU (x) is the smallest machine number greater than or
equal to x;

• rounding towards 0: RZ (x) is equal to RD (x) if x ≥ 0, and to RU (x) if x < 0;

• rounding to nearest: RN (x) is the machine number that is the closest to x (with a
special convention if x is exactly between two machine numbers: the chosen number
is the “even” one, i.e., the one whose last significand bit is a zero).

When a◦ b is computed, where a and b are floating-point numbers and ◦ is +, −, × or
÷, the returned result is what we would get if we computed a ◦ b exactly, with “infinite”
precision and rounded it according to the active rounding mode. The default rounding
mode is round-to-nearest. This requirement is called correct rounding. Among its many
interesting properties, one can cite the following result (the first ideas that underlie it go
back to Møller [10]).

Theorem 1 (Fast2Sum algorithm) (Theorem C of [6], page 236). Assume the radix r
of the floating-point system being considered is less than or equal to 3, and that the used
arithmetic provides correct rounding with rounding to nearest. Let a and b be floating-
point numbers, and assume that the exponent of a is larger than or equal to that of b. The
following algorithm computes two floating-point numbers s and t that satisfy:

• s + t = a + b exactly;

• s is the floating-point number that is closest to a + b.

Algorithm 1 (Fast2Sum(a,b))

s := RN (a + b);
z := RN (s − a);
t := RN (b − z);

If no information on the relative orders of magnitude of a and b is available, there is
an alternative algorithm introduced by Knuth [6]. It requires 6 operations instead of 3
for the Fast2Sum algorithm, but on any modern computer, the 3 additional operations
cost significantly less than a comparison followed by a branching.

Some processors (e.g., the IBM PowerPC or the Intel/HP Itanium [2]) have a fused
multiply-add (fma) instruction that allows to compute ax ± b, where a, x and b are
floating-point numbers, with one final rounding only. This instruction allows one to
design convenient software algorithms for correctly rounded division and square root. It
also has the following interesting property. From two input floating-point numbers a and
b, the following algorithm computes c and d such that c+d = ab, and c is the floating-point
number that is nearest ab.

2

Algorithm 2 (Fast2Mult(a,b))

c := RN (ab);
d := RN (ab − c);

Performing a similar calculation without a fused multiply-add operation is possible [3]
but requires 17 floating-point operations instead of 2.

Algorithms Fast2Sum and Fast2Mult both provide double-precision results of value
(x + y) represented in the form of pairs (x, y). In the following we need product of
numbers represented in this form. However, we will be satisfied with approximations to
the product, discarding terms of the order of the product of the two low-order terms. Given
two double-precision operands (ah + al) and (bh + bl) the following algorithm DblMult
computes (x, y) such that (x + y) = [(ah + al)(bh + bl)](1 + δ) where the relative error δ
is discussed in Section 3 below.

Algorithm 3 (DblMult(ah,al,bh,bl))

t := RN (albh);
s := RN (ahbl + t);
(x′, u) := Fast2Mult (ah, bh);
(x′′, v) := Fast2Sum (x′, s);
y′ := RN (u + v);
(x, y) := Fast2Sum (x′′, y′);

Note that the condition for applying Fast2Sum is satisfied.

2 The two algorithms

We now give two algorithms for accurately computing xn, where x is a floating-point
number, and n is an integer greater than or equal to 1. We assume that an fma instruction
is available, as it is used in Fast2Mult and thus implicitly also in DblMult .

The first (O(n) time) algorithm is derived from the straightforward, (n − 1)-
multiplication, algorithm. It is simple to analyze and will be faster than the other one if
n is small.

Algorithm 4 (LinPower(x, n), n ≥ 1)

(h, l) := (x, 0);
for i from 2 to n do

(h, v) := Fast2Mult (h,x);
l := RN (l x + v);

end do;
return (h, l);

where the low order terms are accumulated with appropriate weights using a Horner
scheme evaluation. Algorithm LinPower uses 3n − 3 floating-point operations.

The second (O(log(n))-time) algorithm is based on successive squarings.

3

Algorithm 5 (LogPower(x, n), n ≥ 1)

i := n;
(h, l) := (1, 0);
(u, v) := (x, 0);
while i > 1 do

if (i mod 2) = 1 then
(h, l) := DblMult (h, l, u, v);

end;
(u, v) := DblMult (u, v, u, v);
i := ⌊i/2⌋;

end do;
return DblMult (h, l, u, v);

Due to the approximations performed in algorithm DblMult , terms corresponding to
the product of low order terms are not included. A thorough error analysis is performed
below. The number of floating-point operations used by the LogPower algorithm is be-
tween 11(1+⌊log2(n)⌋) and 11(1+2 ⌊log2(n)⌋), whereas for LinPower it is 3(n−1). Hence,
LogPower will become faster than LinPower for values of n around 30 (but counting the
floating-point operations only gives a rough estimate, the actual threshold will depend on
the architecture and compiler).

3 Error analysis

We will use the following result.

Theorem 2 (Theorem 2.2 of [4], p. 38) Assume a radix-r floating-point system F ,
with precision p. If x ∈ R lies in the range of F , then

RN (x) = x(1 + δ), |δ| <
1

2
r−p+1.

3.1 Error of function DblMult

Theorem 3 Let ǫ = 2−p, where p is the precision of the radix-2 floating-point system
used. If |al| ≤ 2−p|ah| and |bl| ≤ 2−p|bh| then the returned value (x, y) of function
DblMult(ah, al, bh, bl) satisfies

x + y = (ah + al)(bh + bl)(1 + η),

with
|η| ≤ 6ǫ2 + 16ǫ3 + 17ǫ4 + 11ǫ5 + 5ǫ6 + ǫ7.

Notes:

1. as soon as p ≥ 5, we have |η| ≤ 7ǫ2;
2. in the case of single precision (p = 24), |η| ≤ 6.000001ǫ2;
3. in the case of double precision (p = 53), |η| ≤ (6 + 2 × 10−15) ǫ2.

4

Proof: Following the notation in Algorithm 5, with ǫi’s being variables of absolute value
less than ǫ, we have

x + y = x′′ + RN (u + v)

= x′′ + (u + v)(1 + ǫ1)

= (x′′ + v) + u + uǫ1 + vǫ1

= x′ + s + u + uǫ1 + vǫ1

= ahbh + s + uǫ1 + vǫ1

= ahbh + [ahbl + (albh)(1 + ǫ3)](1 + ǫ2) + uǫ1 + vǫ1

= ahbh + ahbl + albh + ahblǫ2 + albhǫ2 + albhǫ2ǫ3 + albhǫ3 + uǫ1 + vǫ1.

We also have al = ǫ4ah, bl = ǫ5bh, u = ǫ6ahbh, and

v = ǫ7(x
′ + s)

= ǫ7 (ahbh(1 + ǫ8) + [ahbl + albh(1 + ǫ3)](1 + ǫ2))

= ǫ7 (ahbh(1 + ǫ8) + [ǫ5ahbh + ǫ4ahbh(1 + ǫ3)](1 + ǫ2))

= ǫ7ahbh (1 + ǫ8 + ǫ5 + ǫ2ǫ5 + ǫ4 + ǫ2ǫ4 + ǫ3ǫ4 + ǫ2ǫ3ǫ4)

= η1ahbh,

with |η1| ≤ ǫ + 3ǫ2 + 3ǫ3 + ǫ4. Hence

x + y = ahbh + ahbl + albh + (albl − ǫ4ǫ5ahbh) + ahbh(ǫ2ǫ5 + ǫ2ǫ4 + ǫ2ǫ3ǫ4 + ǫ3ǫ4 + ǫ1ǫ6 + η1ǫ1)

= (ah + al)(bh + bl) + ahbhη2,

with |η2| ≤ 6ǫ2 + 4ǫ3 + 3ǫ4 + ǫ5.
Now, from ah = (ah + al)(1 + ǫ9) and bh = (bh + bl)(1 + ǫ10) we deduce

x + y = (ah + al)(bh + bl)(1 + η),

with η = (1 + ǫ)2η2, which gives |η| ≤ 6ǫ2 + 16ǫ3 + 17ǫ4 + 11ǫ5 + 5ǫ6 + ǫ7. �

3.2 Error of algorithm LogPower

Theorem 4 The two values h and l returned by algorithm LogPower satisfy

h + l = xn(1 + α),

with
(1 − |η|)n−1 ≤ 1 + α ≤ (1 + |η|)n−1

where |η| ≤ 6ǫ2 + 16ǫ3 + 17ǫ4 + 11ǫ5 + 5ǫ6 + ǫ7 is the same value as in Theorem 3.

Proof: Algorithm LogPower computes approximations to powers of x, using xi+j = xixj .
By induction, one easily shows that the approximation to xk is of the form xk(1 + βk),
where (1−|η|)k−1 ≤ (1+βk) ≤ (1+|η|)k−1. If we call ηi+j the relative error (obtained from
Theorem 3) when multiplying together the approximations to xi and xj , the induction
follows from

(1−η)i−1(1−η)j−1(1−η) ≤
(
xi(1 + βi)

) (
xj(1 + βj)

)
(1+ηi+j) ≤ (1+η)i−1(1+η)j−1(1+η).

�

5

Table 1 gives bounds on |α| for several values of n (note that the bound is an increasing
value of n), assuming the algorithm is used in double precision.

Define the significand of a non-zero real number u to be

u

2⌊log2
|u|⌋

.

Define αmax as the bound on |α| obtained for a given value of n. From

xn(1 − αmax) ≤ h + l ≤ xn(1 + αmax),

we deduce that the significand of h + l is within 2αmax from xn/2⌊log2
|h+l|⌋. From the

results given in Table 1, we deduce that for all practical values of n the significand of h+ l
is within much less than 2−53 from xn/2⌊log2

|h+l|⌋ (indeed, to get 2αmax larger that 2−53,
we need n > 249). This means that RN (h + l) is within less than one ulp from xn, hence

Theorem 5 If algorithm LogPower is implemented in double precision, then RN (h + l)
is a faithful rounding of xn, as long as n ≤ 249.

n − log2(αmax) n − log2(αmax)

3 102.41 1000 93.45
4 101.83 10,000 90.12
5 101.41 100,000 86.80

10 100.24 1,000,000 83.48
20 99.16 10,000,000 80.16
30 98.55 100,000,000 76.83
40 98.12 232 71.41
50 97.80

100 96.78
200 95.77

Table 1: Binary logarithm of the relative accuracy (− log2(αmax)), for various values of n
assuming algorithm LogPower is used in double precision.

Moreover, for n ≤ 108, RN (h + l) is within 0.50000007 ulps from the exact value: we
are very close to correct rounding (indeed, we almost always return a correctly rounded
result), yet we cannot guarantee correct rounding, even for the smallest values of n. This
requires a much better accuracy, as shown in Section 4. To guarantee a correctly rounded
result in double precision, we will need to run algorithm LogPower in double-extended
precision. Table 2 gives bounds on |α| for several values of n assuming the algorithm is
realized in double-extended precision. As expected, we are 22 bits more accurate.

3.3 Error of algorithm LinPower

Define hi, vi, li as the values of variables h, v and l at the end of the loop of index i of the
algorithm. Define l̂i as the value variable li would have if the instructions l := RN (lx+v)
were errorless (that is, if instead we had l := (lx + v) exactly):

l̂i = vi + vi−1x + vi−2x
2 + vi−3x

3 + · · ·+ v2x
i−2. (1)

6

n − log2(αmax) n − log2(αmax)

3 124.41 1000 115.45
4 123.83 10,000 112.12
5 123.41 100,000 108.80

10 122.24 1,000,000 105.48
20 121.16 10,000,000 102.16
30 120.55 100,000,000 98.83
40 120.12 232 93.41
50 119.80

100 118.78
200 117.77

Table 2: Binary logarithm of the relative accuracy (− log2(αmax)), for various values of n
assuming algorithm LogPower is implemented in double-extended precision.

Initially let h1 = x, v1 = l1 = 0. By induction, one can easily show that

xi = hi + vi + vi−1x + vi−2x
2 + vi−3x

3 + · · · + v2x
i−2, (2)

hence we have
xi = hi + l̂i.

The algorithm only computes an approximation li to l̂i. To evaluate the error of the
algorithm, we must therefore estimate the distance between li and l̂i. We have l1 = l̂1 = 0,
and l2 = l̂2 = v2 exactly. Define ǫi as the number of absolute value less than ǫ = 2−p such
that

li = RN (li−1x + vi) = (li−1x + vi)(1 + ǫi).

We have l3 = l̂3(1 + ǫ3), and by induction, we find for i ≥ 4, using vi = l̂i − l̂i−1x:

li = l̂i(1 + ǫi)

+ l̂i−1ǫi−1x(1 + ǫi)

+ l̂i−2ǫi−2x
2(1 + ǫi−1)(1 + ǫi) (3)

...

+ l̂3ǫ3x
i−3(1 + ǫ4)(1 + ǫ5) · · · (1 + ǫi−1)(1 + ǫi).

To derive a useful bound from this result, we must make a simplifying hypothesis. We
know that |vi| ≤ ǫ|hi|. We assume hi is close enough to xi, so that

|vi| ≤ 2ǫ|x|i

(this means that our estimate for xn will become wrong when the algorithm becomes very
inaccurate for xi, i ≤ n). From (1), we therefore have:

|l̂i| ≤ 2(i − 1)ǫ|x|i,

from which, using (3), we deduce
ln = l̂n + η,

7

where

|η| ≤ 2|x|nǫ2
[
(n − 1) + (n − 2)(1 + ǫ) + (n − 3)(1 + ǫ)2 + · · · + 2(1 + ǫ)n−3

]
. (4)

This gives the following result

Theorem 6 (Accuracy of algorithm LinPower) If for i < n, |vi| ≤ 21−p|x|i, the final
computed values hn and ln of the variables h and l of the algorithm satisfy

hn + ln = xn(1 + α),

where |α| ≤ 2ǫ2 [(n − 1) + (n − 2)(1 + ǫ) + (n − 3)(1 + ǫ)2 + · · · + 2(1 + ǫ)n−3] .

Let us try to compute an estimate of the coefficient γ = (n − 1) + (n − 2)(1 + ǫ) +
(n − 3)(1 + ǫ)2 + · · · + 2(1 + ǫ)n−3 in α.

Define a function

ϕ(t) = tn−1 + (1 + ǫ)tn−2 + (1 + ǫ)2tn−3 + · · · + (1 + ǫ)n−3t2.

One can notice that γ = ϕ′(1), so that if we are able to find a simple formula for ϕ(t) we
will be able to deduce a formula for γ. We have

ϕ(t) = (1 + ǫ)n−1

[(
t

1 + ǫ

)n−1

+

(
t

1 + ǫ

)n−2

+ · · · +

(
t

1 + ǫ

)2
]

,

hence

ϕ(t) = (1 + ǫ)n−1

[(
t

1+ǫ

)n
− 1

t
1+ǫ

− 1
−

t

1 + ǫ
− 1

]

.

Thus

ϕ′(t) = (1 + ǫ)n−2

[

(n − 1)
(

t
1+ǫ

)n
− n

(
t

1+ǫ

)n−1
+ 1

(
t

1+ǫ
− 1

)2 − 1

]

,

Hence a bound on the value of |α| is,

|α| ≤ 2ǫ2(1 + ǫ)n−2

[

(n − 1)
(

1
1+ǫ

)n
− n

(
1

1+ǫ

)n−1
+ 1

(
1

1+ǫ
− 1

)2 − 1

]

≈ (n2 − n − 2)ǫ2.

Table 3 gives the obtained bound on |α| for several values of n, assuming double
precision (ǫ = 2−53). That table shows that as soon as n is larger than a few units,
algorithm LinPower is less accurate than algorithm LogPower.

4 Correct rounding

In this section we consider algorithm LogPower only: first because it is the fastest for
all reasonable values of n, second because it is the only one for which we have certain
error bounds (the error bounds of algorithm LinPower are approximate only). And if
needed, specific algorithms could be designed for small values of n. We are interested

8

n − log2(αmax)

3 104.00
4 102.68
5 101.83

10 99.54
20 97.43
30 96.23

100 92.72

Table 3: Binary logarithm of the relative accuracy (− log2(αmax)), for various values of n
assuming algorithm LinPower is implemented in double precision.

in getting correctly rounded results in double precision. To do so, we assume that we
perform algorithm LogPower in double extended precision. The algorithm returns two
double-extended numbers h and l such that

xn(1 − αmax) ≤ h + l ≤ xn(1 + αmax),

where αmax is given in Table 2.
In the following we will need to distinguish two roundings, e.g., RNe means round-

to-nearest in extended double precision and RNd is round-to-nearest in double precision.
Let ulp(·) denote “unit-in-last-position” such that |x − RN (x)| ≤ 1

2
ulp(x).

V. Lefèvre introduced a new method for finding hardest-to-round cases for evaluating
a regular function [8, 7]. That method allowed Lefèvre and Muller to give such cases for
the most familiar elementary functions [9]. Recently, Lefèvre adapted his method to the
case of functions xn and x1/n, when n is an integer. For instance, in double-precision
arithmetic, the hardest to round case for function x51 corresponds to

x = 1.0100010111101011011011101010011111100101000111011101

we have

x51 = 1.1011001110100100011100100001100100000101101011101110
︸ ︷︷ ︸

53 bits

1

0000000000 · · ·0000000000
︸ ︷︷ ︸

59 zeros
100 · · · × 217

which means that xn is extremely close to the exact middle of two consecutive double-
precision numbers. There is a run of 59 consecutive zeros after the rounding bit. This
case is the worst case for all values of n between 3 and 145. Table 4 gives the maximal
length of the chains of identical bits after the rounding bit for 3 ≤ n ≤ 145.

9

n
Number of identical bits
after the rounding bit

32 48
76, 81, 85 49
9, 15, 16, 31, 37, 47, 54, 55, 63, 65, 74, 80, 83, 86, 105, 109, 126, 130 50
10, 14, 17, 19, 20, 23, 25, 33, 34, 36, 39, 40, 43, 46, 52, 53,

72, 73, 75, 78, 79, 82, 88, 90, 95, 99, 104, 110, 113, 115, 117,

118, 119, 123, 125, 129, 132, 133, 136, 140
51

3, 5, 7, 8, 22, 26, 27, 29, 38, 42, 45, 48, 57, 60, 62, 64, 68, 69,

71, 77, 92, 93, 94, 96, 98, 108, 111, 116, 120, 121, 124, 127, 128,
131, 134, 139, 141

52

6, 12, 13, 21, 58, 59, 61, 66, 70, 102, 107, 112, 114, 137, 138, 145 53
4, 18, 44, 49, 50, 97, 100, 101, 103, 142 54
24, 28, 30, 41, 56, 67, 87, 122, 135, 143 55
89, 106 56
11, 84, 91 57
35, 144 58
51 59

Table 4: Maximal length of the chains of identical bits after the rounding bit (assuming
the target precision is double precision) in the worst cases for n from 3 to 145.

Define a breakpoint as the exact middle of two consecutive double precision numbers.
RNd (h + l) will be equal to RNd (xn) if and only if there is no breakpoint between xn

and h + l.
The worst case obtained shows that if x is a double-precision number, and if 3 ≤

n ≤ 145, then the significand y of x51 is always at a distance larger than 2−113 from the
breakpoint µ (see Figure 1) where the distance |y − µ| ≥ 2−(53+59+1) = 2−113.

a 2−52
µ = (a + 1

2)2−52 (a + 1)2−52
?

y(∼ x
51)

Figure 1: Position of the hardest to round case y = x51 within rounding interval
[a2−52; (a + 1)2−52] with breakpoint µ = (a + 1

2
)2−52, for significand defined by integer a.

We know that the significand of h + l is within 2αmax from that of xn, where αmax

(as given by its binary logarithm) is listed in Table 2. For all values of n less than or
equal to 145, we have 2αmax ≤ 2−113, thus RNd (h+ l) = RNd (xn). We therefore get the
following result:

Theorem 7 If algorithm LogPower is run in double-extended precision, and if 3 ≤ n ≤
145, then RNd (h+l) = RNd (xn): Hence by rounding h+l to the nearest double-precision
number, we get a correctly rounded result.

Now, two important remarks:

• We do not have the worst cases for n > 145, but from probabilistic arguments we
strongly believe that the lengths of the largest chains of consecutive bits after the
rounding bit will be of the same order of magnitude (i.e., around 50) for some range
of n above 145. However, it is unlikely that we will be able to show correct rounding
in double precision for values of n larger than 1000.

10

• On an Intel Itanium processor, it is possible to directly add two double-extended pre-
cision numbers and round the result to double precision without a “double rounding”
(i.e., without having an intermediate sum rounded to double-extended precision).
Hence Theorem 7 can directly be used. It is worth being noticed that the draft re-
vised standard IEEE 754-R (see http://754r.ucbtest.org/) includes the fma as
well as rounding to any specific destination format, independent of operand formats.

Conclusion

It has been shown that the function xn can be calculated in time O(log n) with correct
rounding in double precision, employing double-extended precision arithmetic, at least
for the range 3 ≤ n ≤ 145. A fused multiply accumulate (fma) instruction is assumed
available for algorithm efficiency reasons; and to keep the analysis simple, it was assumed
that the input as well as the output are not subnormal numbers and are below the overflow
threshold.

A simpler, O(n) time algorithm, faster than the above for small values of n, was
also analyzed. However, its error analysis turned out to be more complicated (and less
rigorous), and also to be less accurate than the other.

References

[1] American National Standards Institute and Institute of Electrical and Electronic En-
gineers. IEEE standard for binary floating-point arithmetic. ANSI/IEEE Standard,
Std 754-1985, New York, 1985.

[2] M. Cornea, J. Harrison, and P. T. P. Tang. Scientific Computing on Itanium-Based
Systems. Intel Press, Hillsboro, OR, 2002.

[3] T. J. Dekker. A floating-point technique for extending the available precision. Nu-
merische Mathematik, 18:224–242, 3 1971.

[4] N. Higham. Accuracy and Stability of Numerical Algorithms, Second Edition. SIAM,
Philadelphia, PA, 2002.

[5] American National Standards Institute, Institute of Electrical, and Electronic Engi-
neers. IEEE standard for radix independent floating-point arithmetic. ANSI/IEEE
Standard, Std 854-1987, New York, 1987.

[6] D. Knuth. The Art of Computer Programming, 3rd edition, volume 2. Addison-
Wesley, Reading, MA, 1998.

[7] V. Lefèvre. Developments in Reliable Computing, chapter An Algorithm That Com-
putes a Lower Bound on the Distance Between a Segment and Z2, pages 203–212.
Kluwer Academic Publishers, Dordrecht, 1999.

[8] V. Lefèvre. Moyens Arithmétiques Pour un Calcul Fiable. PhD thesis, École Normale
Supérieure de Lyon, Lyon, France, 2000.

11

http://754r.ucbtest.org/

[9] V. Lefèvre and J.-M. Muller. Worst cases for correct rounding of the elementary func-
tions in double precision. In Burgess and Ciminiera, editors, Proc. of the 15th IEEE
Symposium on Computer Arithmetic (Arith-15). IEEE Computer Society Press, Los
Alamitos, CA, 2001.

[10] 0. Møller. Quasi double-precision in floating-point addition. BIT, 5:37–50, 1965.

12

