
On the computation of correctly-rounded sums

P. Kornerup V. Lefèvre N. Louvet
J.-M. Muller ∗

This is LIP research report No 2008-35

October 2008

Abstract

The computation of sums appears in many domains of numerical analysis. We show
that among the set of the algorithms with no comparisons performing only floating-
point operations, the 2Sum algorithm introduced by Knuth is optimal, both in terms
of number of operations and depth of the dependency graph. We also show that,
under reasonable conditions, it is impossible to always obtain the correctly rounded-to-
nearest sum of n ≥ 3 floating-point numbers with an algorithm without tests performing
only round-to-nearest additions/subtractions. Boldo and Melquiond have proposed an
algorithm to compute the rounded-to-nearest sum of three operands, introducing a new
rounding mode unavailable on current hardware, rounding to odd; but their simulation
of rounding to odd requires tests. We show that rounding to odd can be be realized
using only floating-point additions/subtractions performed in the standard rounding
modes and a multiplication by the constant 0.5, thus allowing the rounded-to-nearest
sum of three floating-point numbers to be determined without tests. Starting from the
algorithm due to Boldo and Melquiond, we also show that the sum of three floating-
point values rounded according to any of the standard directed rounding modes can be
determined using only additions/subtractions, provided that the operands are of the
same sign.

Keywords: Floating-point arithmetic, summation algorithms, correct rounding, 2Sum
and Fast2Sum algorithms.

1 Introduction

The computation of sums appears in many domains of numerical analysis. They occur when
performing numerical integration, when evaluating dot products, means, variances and many
other functions. When having to add floating point numbers a1, a2, . . . , an, the best we can
hope is to get ◦(a1 + a2 + · · · an), where ◦ is the desired rounding mode. This can always be
done at a rather large cost, using multiple-precision arithmetic. The purpose of this paper
is to see if this can be done by very simple programs, that only use floating-point additions
and subtractions in the target format, and without comparisons, or conditional expressions,
or min/max instructions.

∗Peter Kornerup is with SDU, Odense, Denmark; Vincent Lefèvre, Nicolas Louvet and Jean-Michel Muller
are with CNRS/INRIA/Université de Lyon, Lyon, France.
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The original IEEE 754-1985 standard [1] for radix-2 floating-point arithmetic (as well as
its follower, the IEEE 854-1987 radix-independent standard [2], and the newly IEEE 754-2008
revised standard [9]) requires that the four arithmetic operations and the square root should
be correctly rounded. In a floating-point system that follows one of these standards, the user
can choose an active rounding mode (called rounding direction attribute in IEEE 754-2008),
from:

• rounding toward −∞: RD (x) is the largest machine number less than or equal to x;

• rounding toward +∞: RU (x) is the smallest machine number greater than or equal to
x;

• rounding toward 0: RZ (x) is equal to RD (x) if x ≥ 0, and to RU (x) if x < 0;

• rounding to nearest: RN (x) is the machine number that is the closest to x (with a
special tie-breaking rule if x is exactly between two machine numbers: in IEEE 754-1985
and IEEE 854-1987, the chosen number is the “even” one1. IEEE 754-2008 requires
this “round-to-nearest even” rule, but also defines a “round-to-away” rule – mainly for
financial, decimal, calculations).

When a ◦ b is computed, where a and b are floating-point numbers and ◦ is +, −, × or ÷,
the returned result is what we would get if we computed a◦b exactly, with “infinite” precision
and rounded it according to the active rounding mode. The default rounding mode is round-
to-nearest. This requirement is called correct rounding. This makes arithmetic deterministic
(provided all computations are done in the same format, which might sometimes be difficult
to ensure [13]). This allows one to design algorithms and proofs. An example is the following
result (due to Dekker [4]).

Theorem 1 (Fast2Sum algorithm). Assume the radix r of the floating-point system being
considered is 2 or 3, and that the used arithmetic provides correct rounding with rounding
to nearest. Let a and b be finite floating-point numbers, and assume that the exponent of
a is larger than or equal to that of b. The following algorithm computes two floating-point
numbers s and t that satisfy:

• s+ t = a+ b exactly;

• s is a+ b rounded to nearest.

Algorithm 1 (Fast2Sum(a,b)).

s = RN (a+ b);
z = RN (s− a);
t = RN (b− z);

Note that the condition “the exponent of a is larger than or equal to that of b” might be
slow to check in a portable way, but if |a| ≥ |b|, then that condition will be fulfilled.

If no information on the relative orders of magnitude of a and b is available, there is
an alternative algorithm due to Knuth [11] and Møller [12], called 2Sum. It requires 6
operations instead of 3 for the Fast2Sum algorithm, but on current pipelined architectures,
an if statement with an wrong branch prediction may cause the instruction pipeline to drain:

1In binary, the one whose last significand bit is a zero.
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due to that, using 2Sum will usually result in much faster software than using a comparison
followed by Fast2Sum. The names “2Sum” and “Fast2Sum” seem to have been coined by
Shewchuk [16]. We call these algorithms Error-free additions.

Algorithm 2 (2Sum(a,b)).

s = RN (a+ b);
b′ = RN (s− a);
a′ = RN (s− b′);
δb = RN (b− b′);
δa = RN (a− a′);
t = RN (δa + δb);

The problem of computing very accurately the sum of n floating-point numbers arises in
many domains, hence it has been dealt with by many authors. Two major techniques have
been used: either to try to re-order the input operands, to try to minimize the error of the
“straightforward” addition algorithm, or to use methods similar to 2Sum or Fast2Sum to
somehow “compensate” the errors of the individual additions by re-injecting these errors at
some point in the calculations. For instance, Kahan [10], Pichat [14], and Priest [15] have
built clever “compensating” method. Higham [7, 8] gives a very interesting survey. Ogita,
Rump and Shin’ichi generalize the “compensated” methods by Kahan and Pichat.

In all the following, we consider a binary, precision-p, floating-point format.

2 2Sum is optimal

Definition 1. In the following, we call RN-addition algorithm without branching an algo-
rithm

• without comparisons, or conditional expressions, or min/max instructions;

• only based on floating-point additions or subtractions in round-to-nearest mode: at step
i the algorithm computes RN (a+ b) or RN (a− b) where a and b are either one of the
input values, or a previously-computed value.

For instance, 2Sum is an RN-addition algorithm without branching. It requires 6 floating-
point operations. To estimate the performance of an algorithm, only counting the operations
is a rough estimate: on modern architectures, pipelined arithmetic operators and the avail-
ability of several FPUs make it possible to perform some operations in parallel, provided
they are independent. Hence, the depth of the dependency graph of the instructions of the
algorithm is an important criterion. In the case of Algorithm 2Sum, two operations only can
be performed in parallel:

δb = RN (b− b′)

and
δa = RN (a− a′)

hence we will say that the depth of Algorithm 2Sum is 5. We show the following results,
that proves that, among the RN-addition algorithms without branching, 2Sum is optimal in
terms of number of operations as well as in terms of depth of the dependency graph.
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Theorem 2. An RN-addition algorithm without branching that computes the same results
as 2Sum requires at least 6 arithmetic operations.

Theorem 3. An RN-addition algorithm without branching that computes the same results
as 2Sum has depth at least 5.

Proof. To prove Theorems 2 and 3, we have proceeded as follows. We enumerated all possible
RN-addition algorithms without branching with 2 input values, that use 5 additions and/or
subtractions or less (for Theorem 2) or that have depth 4 or less (for Theorem 3), eliminating
obvious symmetries (for instance, this gave 480756 algorithms for Theorem 2). Each of these
algorithms was tried with 2 pairs of well-chosen input values a and b for Theorem 2 (and 3
pairs for Theorem 3), so that every algorithm for which we did not get the right answer for
one of the pairs of input values could be immediately eliminated. The idea was that we could
then analyze more deeply the very few algorithms that would remain. But there remained
none. As an example, the C program that checks that there are no algorithms equivalent to
2Sum with depth ≤ 4 is given in an appendix.

We used a similar strategy for studying all algorithms with 6 additions and/or subtractions
(i.e., the same number as 2Sum) and could conclude that the only algorithms that give
the same results as 2Sum are derived from 2Sum through straightforward symmetries (e.g.,
inversion of the two operations that can be performed in parallel, or replacement of b′ =
RN (s − a) by b′′ = RN (a − s) and, later on, replacement of s − b′ by s + b′′ and of b − b′

by b + b′′). Hence, in a way, 2Sum is the only algorithm that computes s = RN (a + b) and
t = a+ b−RN (a+ b) in 6 operations.

3 On the impossibility of getting RN (x1 + x2 + · · · + xn)

under some conditions

We are interested in the computation of the sum of n floating-point numbers, correctly
rounded to nearest. We assume a binary, precision-p, floating-point format.

Theorem 4. Assume x1, x2, x3, . . . , xn (n ≥ 3) are floating-point numbers of the same
format. Assuming an unbounded exponent range, an RN-addition algorithm employing only
additions and subtractions without branching cannot always return RN (x1 + x2 + · · · + xn).

If there exists an RN-addition algorithm to compute the rounded to nearest sum of n
floating-point numbers, with n ≥ 3, then this algorithm must also compute the rounded to
nearest sum of 3 floating-point values. As a consequence we only consider the case n = 3
in the proof of this theorem. We will show how to construct for any RN-algorithm a set
of input data such that the result computed by the algorithm differs from the rounded to
nearest result.

Proof of Theorem 4. An RN-addition algorithm without branching can be represented by a
directed acyclic graph2 (DAG) whose nodes are the arithmetic operations: given such an
algorithm, let r be the depth of its associated graph. First, we consider the input values x1,
x2, x3 defined as follows.

2Such an algorithm cannot have WHILE loops, since tests are prohibited. It may have FOR loops, that
can be unrolled
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• x1 = 2k+p and x2 = 2k: x1 and x2 are two nonzero multiples of 2k whose sum is the
exact middle of two consecutive FP numbers;

• x3 = ε, with 0 ≤ 2r−1|ε| ≤ 2k−p−1.

Note that when ε 6= 0,

RN (x1 + x2 + x3) =



























RD (x1 + x2 + x3) if ε < 0

RU (x1 + x2 + x3) if ε > 0,

where we may also conclude that RN (x1 + x2 + x3) 6= 0.
The various computations that can be performed “at depth 1”, i.e., immediately from the

entries of the algorithm are illustrated below. The value of ε is so small that after rounding
to nearest, every operation with ε in one of its entries will return the same value as if ε were
zero, unless the other entry is 0 or ε.

+/− +/− +/−

xi xj xi ε ε ε

0 or nonzero
multiple of 2k

∈ {−2ε,−ε, 0, ε, 2ε}±xi

An immediate consequence is that after these computations “at depth 1”, the possible
available variables are nonzero multiples of 2k that are the same as if ε were 0, and values taken
from S1 = {−2ε,−ε, 0, ε, 2ε}. By induction, one easily shows that the available variables after
a computation of depth m are either nonzero multiples of 2k that are the same as if ε were
0 or values taken from Sm = {−2mε, · · · , 0, · · · ,+2mε}.

Now, consider the very last addition/subtraction, at depth r in the DAG of the RN-
addition algorithm. If at least one of the inputs of this last operation is a nonzero multiple
of 2k that is the same as if ε were 0, then the other input is either also a nonzero multiple of
2k or a value belonging to Sr−1 = {−2r−1ε, · · · , 0, · · · ,+2r−1ε}. In both cases the result does
not depend on the sign of ε, hence it is always possible to choose the sign of ε so that the
rounded to nearest result differs from the computed one. If both entries of the last operation
belong to Sr−1, then the result belongs to Sr = {−2rε, · · · , 0, · · · ,+2rε}: if one set ε = 0,
then the computed result is 0, contradicting the fact that the rounded to nearest sum must
be nonzero.

In the proof of Theorem 4, it was necessary to assume an unbounded exponent range to
make sure that with a computational graph of depth r we can always build an ε so small
that 2r−1ε will vanish when added to any multiple of 2k. This constraint can be transformed
into a constraint on r related to the extremal exponents emin and emax of the floating-point
system. Indeed, assuming ε = ±2emin and x1 = 2k+p = 2emax , the inequality 2r−1|ε| ≤ 2k−p−1

gives the following theorem.
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Theorem 5. Assume x1, x2, x3, . . . , xn (n ≥ 3) are floating-point numbers of the same
format. Assuming the extremal exponents of the floating-point format are emin and emax, an
RN-addition algorithm without branching, of depth r, cannot always return RN (x1 + x2 +
· · · + xn), as soon as

r ≤ emax − emin − 2p.

For instance, with the IEEE 754-1985 double precision format (emin = −1022, emax =
1023, p = 53), Theorem 5 shows that an RN-addition algorithm without branching able to
always evaluate the rounded to nearest sum of at least 3 floating-point numbers (if such an
algorithm exists!) must have depth at least 1939.

4 On the sum of three floating-point numbers

4.1 The Boldo-Melquiond algorithm: another way to round to odd

Floating-point addition allows one to compute ◦(a + b), where a and b are floating-point
numbers, and in the case of the round-to-nearest mode, the 2Sum and Fast2Sum algorithms
make it possible to compute the error of that floating-point addition. The question that arises
is: can we do something similar with the sum of three floating-point numbers? Theorem 4
shows that this is impossible to get RN (a + b + c) just by performing rounded-to-nearest
additions or subtractions. A natural question is: what can we do if we allow intermediate
use of other rounding modes?

Boldo and Melquiond [3] introduce a new rounding mode, round-to-odd, ◦odd, defined as
follows:

• if x is a floating-point number, then ◦odd(x) = x;

• otherwise, ◦odd(x) is the value among RD (x) and RU (x), whose last significant bit is
a one.

This rounding mode is not implemented on current architectures, but that could easily
be done. Interestingly enough, Boldo and Melquiond show that using only one rounded-to-
odd addition, one can easily compute RN (a + b + c), where a, b and c are floating-point
numbers. Their algorithm is given in Figure 1. They explain how to implement rounded-to-
odd additions, but unfortunately their method requires testing.

However, if we allow multiplication by the simple constant 0.5 we can implement the odd-
rounded addition, ◦odd(a+ b) as follows. Notice that our algorithm requires round-to-nearest
even, which is the default mode in IEEE-754 binary arithmetic.

Algorithm 3 (OddRoundSum(a,b)).

d = RD (a+ b);
u = RU (a+ b);
e′ = RN (d+ u);
e = e′ × 0.5; {exact}
o′ = u− e; {exact}
o = o′ + d; {exact}
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Error-free addition

Error-free addition

Odd-rounded addition

v = ◦odd(tℓ + uℓ)

Rounded-to-nearest addition

z = RN (a+ b+ c)

a b c

uh uℓ

th tℓ

Figure 1: The Boldo-Melquiond algorithm [3] for computing the correctly rounded to nearest
sum of 3 floating-point numbers. It requires an “odd-rounded” addition, a rounding mode
not available on current floating-point units. The error-free additions are performed using
the 2Sum algorithm (unless we know for some reason the ordering of the magnitude of the
variables, in which case 2Sum may be used).

Proof. By definition, if a + b is a representable floating-point number, the output o of the
algorithm is the odd-rounded sum of a+ b. Otherwise, provided that there is no overflow or
underflow, d and u will be the two closest representable floating-point numbers surrounding
a + b, with the exact value of d+u

2
being the midpoint of the open interval (d;u). Then the

last significant bit of RN (d+u) is zero, and so is the least significant bit of RN (d+u)×0.5.
Therefore, e is either d or u and the last bit of its significand is a zero: this means that, to
get the rounded-to-odd sum of a and b, we must return d if e = u, and u otherwise. One
easily sees that:

• if e = u then o′ = 0 therefore o = d;

• if e = d then o′ = u − d (which is exactly representable by Sterbenz lemma), so that
o = u.

Hence it is trivially seen that the output is the odd-rounded sum of a+ b.

Note that d and u may be calculated in parallel, and that the calculation of e′ and e may
be combined if an FMA instruction is available. But unfortunately, on most floating-point
units changing rounding mode requires flushing the pipeline, and hence is very expensive.
However, on the Itanium processor such changes costs nothing, provided the algorithm is
programmed in assembly code.

Following Boldo-Melquiond we then immediately have:
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Theorem 6. If there are no underflows or overflows in intermediate operations, then the
algorithm given in Figure 1, employing addition, subtraction and multiplication by 0.5, com-
putes RN (a + b + c) for all floating-point numbers a, b and c, employing only available
IEEE-754 rounding modes.

We have no proof that obtaining RN (a + b + c) is impossible using only additions and
subtractions with a combination of the four IEEE-754 rounding modes without tests.

4.2 Getting DR (a+ b+ c) when a, b and c have the same sign

Let us now deal with the problem of computing DR (a + b + c), where DR denotes one of
the directed rounding modes (RZ , RD or RU ), without branching (yet allowing all four
rounding modes of IEEE 754). Our algorithm is depicted in Figure 2. As one immediately
sees, it is a simple modification of the Boldo-Melquiond algorithm: the only difference is that
the last two operations use a directed rounding mode.

Error-free addition

Error-free addition

Directed rounded addition

v = DR (tℓ + uℓ)

Directed rounded addition

z = DR (a+ b+ c)

a b c

uh uℓ

th tℓ

Figure 2: Our modified version of the Boldo-Melquiond algorithm. It computesDR (a+b+c),
provided that a, b and c have the same sign.

Theorem 7. If there are no underflows or overflows in intermediate operations, then the
algorithm given in Figure 2 computes DR (a+ b+ c) for all floating-point numbers a, b and
c that have the same sign.

It is worth mentioning that in the general case, even when a, b and c do not have the
same sign, the cases for which the algorithm does not return DR (a+ b+ c) seem very rare.
Anyway, the following table provides such counter-examples for the three directed rounding
modes.
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RD RZ RU
a = −11100012 × 210 a = 11010012 × 26 a = −11111112 × 223

b = 10010112 × 213 b = 10000012 × 20 b = 11111002 × 231

c = −11000012 × 25 c = −10110002 × 28 c = −10101012 × 230

We define ulp(x) as the distance between the closest straddling floating-point numbers a
and b (i.e., those with a < x ≤ b). This particular definition of the ulp, due to Harrison [5, 6],
is needed below.

Proof of Theorem 7. Without loss of generality, we assume that a, b and c are all non-
negative. The error-free additions (i.e., using 2Sum algorithm, unless we have some in-
formation on the ordering of the variables that makes it possible to use Fast2Sum) guarantee
that

uh = RN (b+ c), uh + uℓ = b+ c, |uℓ| ≤
1

2
ulp(uh),

and

th = RN (a+ uh), th + tℓ = a+ uh, |tℓ| ≤
1

2
ulp(th).

In particular, this implies that uh and th are both non-negative and a+ b+ c = th + tℓ + uℓ.
Since a and uh are both non-negative, we have uh < a+uh. By monotonicity of rounding

to the nearest, this implies uh ≤ RN (a + uh) = th, and we deduce that ulp(uh) ≤ ulp(th).
Hence |uℓ| ≤

1

2
ulp(uh) ≤

1

2
ulp(th), and since |tℓ| ≤

1

2
ulp(th), using the triangular inequality,

we obtain
|tℓ + uℓ| ≤ ulp(th).

If |tℓ + uℓ| = ulp(th), since it is a floating-point number, v = tℓ + uℓ is computed exactly and
DR (th+ tℓ+ uℓ) = DR (th+ v). On the other hand, if |tℓ+ uℓ| < ulp(th), we distinguish the
case of each directed rounding mode.

In the case of rounding toward zero (DR = RZ ), from |tℓ + uℓ| < ulp(th) we deduce

RZ (th + tℓ + uℓ) =

{

th if tℓ + uℓ ≥ 0
t−h if tℓ + uℓ < 0

,

and since |v| = |tℓ + uℓ| < ulp(th),

RZ (th + v) =

{

th if v ≥ 0
t−h if v < 0

.

As tℓ + uℓ and v have the same sign, the equality RZ (th + tℓ + uℓ) = RZ (th + v) follows.
In the case of rounding downward (DR = RD ), since |tℓ + uℓ| < ulp(th) we have

RD (th + tℓ + uℓ) =

{

th if tℓ + uℓ ≥ 0
t−h if tℓ + uℓ < 0

.

We use the following fact: if x is a real number, and f is a power of two such that |x| < f ,
then |RD (x)| ≤ f and |RD (x)| = f implies x < 0. Here, since |tℓ + uℓ| < ulp(th), we know
that |v| = RD (tℓ + uℓ) ≤ ulp(th). As a consequence, we distinguish again two cases.

• If |v| = ulp(th), then tℓ + uℓ and v are both non-positive, thus RD (th + v) = t−h .
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• If |v| < ulp(th), then

RD (th + v) =

{

th if v ≥ 0
t−h if v < 0

.

Since tℓ + uℓ and v share the same sign, the equality RD (th + tℓ + uℓ) = RD (th + v) holds.
The case of rounding upward (DR = RU ) is treated using the same arguments as for the

case of rounding downward.

5 Conclusions

We have proved that Knuth’s 2Sum algorithm is optimal, both in terms of the number
of operations and the depth of the dependency graph. We have also shown that, just by
performing rounded-to-nearest floating-point additions and subtractions without any testing,
it is impossible to compute the rounded-to-nearest sum of n ≥ 3 floating-point numbers. We
have shown that if changing the rounding mode is allowed, we can implement without testing
the nonstandard rounding to odd defined by Boldo and Melquiond, which makes it indeed
possible to compute the sum of three floating-point numbers rounded to the nearest. We
finally proposed an adaptation of the Boldo-Melquiond algorithm for calculating a + b + c
rounded according to the standard directed rounding modes when a, b and c share the same
sign.
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Appendix: C program that checks that there are no

algorithms equivalent to 2Sum with depth ≤ 4.

/* Prove that there exist no TwoSum algorithms with depth <= 4. */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#ifndef MAXDEPTH

#define MAXDEPTH 4

#endif

#if MAXDEPTH > 4

/* Note: to reduce the number of searches (though not all algorithms

may be found), it is advised to define SKIPDOUBLE. */

#define SIZE 90000000

#else

#define SIZE 8000

#endif

#define NNX (0)

#define NNY (1)

typedef struct

{

int i; /* node number of 1st operand */

int j; /* node number of 2nd operand */

int n; /* 0 if addition, 1 if subtraction */

int d; /* depth, dag[*].d is an increasing function */

double r; /* result 1 */

double s; /* result 2 */

double t; /* result 3 */

} NODE;

static NODE dag[SIZE];

static void algout (long k, long i, long j, int n)

{

printf ("v[%ld] = v[%ld] %c v[%ld]\n", k, i, "+-"[n], j);

if (i > NNY)

algout (i, dag[i].i, dag[i].j, dag[i].n);

if (j > NNY)

algout (j, dag[j].i, dag[j].j, dag[j].n);

}

int main (void)

{

double res1, res3;

int d;
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long k;

dag[NNX].r = 4.12310562561766;

dag[NNY].r = 0.31830988618379;

dag[NNX].s = dag[NNY].r;

dag[NNY].s = dag[NNX].r;

dag[NNX].t = 1.5;

dag[NNY].t = nextafter (dag[NNX].t, 2.0);

dag[NNX].d = dag[NNY].d = 0;

res1 = dag[NNX].r + dag[NNY].r;

if (fabs (dag[NNX].r) > fabs (dag[NNY].r))

{

res1 = dag[NNX].r - res1;

res1 += dag[NNY].r;

}

else

{

res1 = dag[NNY].r - res1;

res1 += dag[NNX].r;

}

res3 = dag[NNX].t + dag[NNY].t;

if (fabs (dag[NNX].t) > fabs (dag[NNY].t))

{

res3 = dag[NNX].t - res3;

res3 += dag[NNY].t;

}

else

{

res3 = dag[NNY].t - res3;

res3 += dag[NNX].t;

}

k = NNY;

for (d = 1; d <= MAXDEPTH; d++)

{

long last, i, j;

int n;

/* Build the results at depth d (exactly). */

last = k;

for (i = 0; i <= last; i++)

for (j = 0; j <= last; j++)

for (n = 0; n <= 1; n++)

{

NODE res, *p;
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#ifdef SKIPDOUBLE

if (i == j)

continue;

#endif

/* Addition: require i <= j since addition is commutative.

Subtraction: require i != j since computing 0 is useless.

Also require that the depth of one of the children is

equal to d-1. */

if (n ? (i == j || (dag[i].d != d-1 && dag[j].d != d-1))

: (i > j || dag[j].d != d-1))

continue;

k++;

if (d == MAXDEPTH)

p = &res;

else

{

if (k == SIZE)

{

fprintf (stderr, "depth4: array is too short\n");

exit (1);

}

p = dag + k;

dag[k].i = i;

dag[k].j = j;

dag[k].n = n;

dag[k].d = d;

}

p->r = n ? dag[i].r - dag[j].r : dag[i].r + dag[j].r;

p->s = n ? dag[i].s - dag[j].s : dag[i].s + dag[j].s;

p->t = n ? dag[i].t - dag[j].t : dag[i].t + dag[j].t;

if (p->r == res1 && p->s == res1 && p->t == res3)

{

printf ("depth = %d -> Algorithm %ld\n", d, k);

algout (k, i, j, n);

}

}

printf ("depth = %d, %ld results\n", d, k+1);

}

return 0;

}
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