
Multiplication by an Integer Constant:

Lower Bounds on the Code Length

Vincent Lefèvre

INRIA Lorraine, 615 rue du Jardin Botanique, 54602 Villers-lès-Nancy Cedex,

France

Abstract

In this paper, we deal with code that performs a multiplication by a given integer
constant using elementary operations, such as left shifts (i.e. multiplications by
powers of two), additions and subtractions. Generating such a code can also be seen
as a method to compress (or more generally encode) integers. We will discuss neither
the way of generating code, nor the quality of this compression method, but this
idea will here be used to find lower bounds on the code length, i.e. on the number
of elementary operations.

Key words: integer multiplication, addition chains, compression

1 Introduction

We consider the problem of generating code to perform a multiplication by
an integer constant n, using elementary operations, such as left shifts (i.e.
multiplications by powers of two), additions and subtractions. This problem
has been studied and algorithms have been proposed in [3,4,7–9,5]. Other
operations like right shifts could be taken into account, but we will restrict to
the above operations, as this was done in [8,9]. However, the results presented
in this paper could straightforwardly be generalized.

In this paper, we are interested in the relation between the multiplication by
an integer constant problem and the compression (Section 4). This will allow
us to deduce lower bounds on the length of the generated code, also called
program (Section 5). But we first give a formulation of the problem (the same
as in [8,9]) in Section 2 and discuss on bounds on the shift counts in Section 3.

Email address: Vincent.Lefevre@loria.fr (Vincent Lefèvre).
URL: http://www.vinc17.org/research/ (Vincent Lefèvre).

Preprint submitted to Real Numbers and Computers’5 11 July 2003

2 Formulation of the Problem

We now formulate the problem. The assumptions and choices we will make for
our model are not discussed here. The reader can find more details in [8,9].

An integer x left-shifted c bit positions (i.e. x multiplied by 2c) is denoted by
x << c, and when we write expressions, the shift has a higher precedence than
the addition and the subtraction (contrary to the precedence rules of some
languages, like C or Perl). We assume that the computation time of a shift
operation does not depend on the value c, commonly called the shift count.

In practice, shifts are generally associated with an addition or a subtraction:
expressions can be rewritten to delay some shift operations. For instance, in
(x << 3 + y << 8) << 1, instead of performing the shift by 3 immediately, we
choose to perform it after the addition, by factorizing it: (x + y << 5) << 4.
Thus, in our model, the elementary operations will be additions and sub-
tractions where one of the operands is left-shifted by a fixed number of bits
(possibly zero), and we assume that these operations take the same computa-
tion time, which will be chosen to be a time unit.

Let n be a nonnegative odd integer (this is our constant) 1 . A finite sequence
of nonnegative integers u0, u1, u2, . . . , uq is said to be acceptable for n if it
satisfies the following properties:

• initial value: u0 = 1;
• for all i > 0, ui = |si uj + 2ci uk|, with j < i, k < i, si ∈ {−1, 0, 1} and

ci ≥ 0;
• final value: uq = n.

Thus, from an acceptable sequence for n, we can multiply any arbitrary num-
ber x by n, using the same operations as above: the corresponding program
iteratively computes uix from already computed values ujx and ukx, to finally
obtain nx. Note that the absolute value is used here to make the notations sim-
pler and no absolute values are actually computed: the absolute value means
that if si = −1, the smaller value is subtracted from the larger value.

The problem is to generate, from the number n, an acceptable sequence
(ui)0≤i≤q that is as short as possible; q is called the quality or length of the cor-
responding program (it is the computation time when this program is executed
under the condition that each instruction takes one time unit).

1 We choose to restrict to odd integers, because if we want to perform a multipli-
cation by n, we can seek to perform a multiplication by the odd integer of the form
n/2c; this choice may lead to longer codes, but the difference is not significant, and
this is what algorithms used in practice do, working on odd integers only.

2

As n is odd, we have si 6= 0 for all i in a minimal acceptable sequence. This
can be shown by delaying the shifts. Indeed, if the delayed shift associated
with ui is denoted δi, δ0 being 0, we can write di = δk + ci − δj and ui can be
replaced by u′

i, such that u′
0 = 1 and for i > 0:

(u′
i, δi) =

(u′
k, δk + ci) if si = 0,

(
∣

∣

∣si u
′
j + 2di u′

k

∣

∣

∣ , δj) if si 6= 0 and di ≥ 0,

(
∣

∣

∣si u
′
k + 2−di u′

j

∣

∣

∣ , δk + ci) if si 6= 0 and di < 0.

Then we have ui = 2δi u′
i and δq = 0 (since n is odd); therefore the sequence

(u′
i)0≤i≤q is acceptable for n. Operations u′

i = u′
k (corresponding to si = 0)

can be removed. Thus, if the sequence (ui) is minimal, there cannot be such
an operation, and si 6= 0 for all i.

Generating optimal code is very difficult. Therefore one uses heuristics in prac-
tice; such heuristics have been described in [3,4,7–9,5]. This paper does not
deal with what these heuristics do exactly, but with lower bounds on the
length q of any program (either an optimal program or a program generated
by some heuristic). The lower bounds will be found by regarding the program
as a compressed form of the number n and using results from the theory of
information.

3 Bounds on the Shift Count

3.1 Considered Bounds

To obtain an upper bound on the size of an elementary operation (Section 4.3),
we need to know a bound on the shift counts ci. But we currently do not know
any proved useful result. We will assume that for any i, ci is bounded by S(m),
where S is a function of the number of bits m of the constant n.

First, we require that S(m) ≥ m to be able to compute 2m − 1 with one el-
ementary operation. Moreover, currently-known heuristics generate code that
always satisfies ci ≤ m, leading to S(m) = m. But what can we say about
the function S when considering the class of optimal programs? To get n with
an optimal program, experiments suggest that ui/n is probably unbounded 2 .
However, we do not know any useful result about shift counts. Therefore, we
need to consider a conjectured bound, such as S(m) = α.m for some α ≥ 1 (if
the optimal program for the multiplication by n is adequately chosen).

2 Indeed, two large values uj and 2ci uk close to each other and computable with
few elementary operations may be subtracted to give a much smaller value.

3

3.2 Some Notations

Consider a program P and its associated shift counts c1, c2, . . . , cq. We denote:
cmax(P) = max1≤i≤q ci. Let n be a nonnegative odd integer, qopt(n) the minimal
integer such that there is a program that computes n in qopt(n) elementary
operations and P(n) the set of these minimal (or optimal) programs. We
define: cinf(n) = infP∈P(n) cmax(P) and csup(n) = supP∈P(n) cmax(P).

Remarks: We will prove in Section 3.6 that csup(n) is finite for any n (this is
not obvious). Moreover, as the program length does not depend on the choice
of the optimal program for n, we can choose any optimal program and only
cinf(n) will be useful concerning the lower bounds on the program length: it
suffices to require that S(m) ≥ cinf(n) for any m-bit number n; but doing
proofs on cinf(n) is more difficult than on csup(n).

3.3 Computed Results

To justify the considered bound S(m) = α.m, we performed some computa-
tions on small values of n: we considered all the possible acceptable sequences
for n satisfying 1 ≤ n ≤ 220 − 1, with the restriction ui ≤ 225 for any i (we
need some restriction, as the number of acceptable sequences for n is infinite).
Of course, the following results are subject to this restriction and should not
be regarded as proved results.

We obtained the following result on cinf : For 3 ≤ m ≤ 20, the maximum value
of the computed cinf(n) for all m-bit numbers n is equal to m, and this shift
count m is needed only for n = 2m − 1 (computed by 1 << m − 1).

Concerning csup, Table 1 gives the maximum value of the computed csup(n) for
all m-bit numbers n. We stopped at m = 16 because the results for m > 16
are affected by the chosen restriction ui ≤ 225.

m max csup n

2 2 3

3 3 7

4 4 11

5 5 23

6 7 43

m max csup n

7 8 91

8 9 187

9 10 379

10 11 683

11 14 1, 369

m max csup n

12 15 2, 969

13 17 4, 945

14 19 14, 709

15 22 22, 387

16 25 46, 853

Table 1
For 2 ≤ m ≤ 16, the maximum value of the computed csup(n) for all m-bit numbers
n, and the minimum value of n where this shift count csup(n) appears.

4

For instance, the corresponding optimal code for the 16-bit number n = 46, 853
is:

u0 = 1

u1 = u0 << 9 − u0 = 511

u2 = u1 << 2 − u0 = 2, 043

u3 = u1 << 8 − u2 = 128, 773

u4 = u0 << 25 − u3 = 33, 425, 659

u5 = u2 << 14 − u4 = 46, 853

We can guess from these results that to prove a bound S(m) = α.m, consid-
ering only the fact that a program is optimal (as it is sometimes done) would
not be sufficient. Thus, the choice of the optimal program is important to
avoid very large shift counts like in the above example. This fact is proved on
a generic example in the following section.

3.4 An Example of Optimal Programs With Large Shift Counts

For h ≥ 2, consider n = (1 + 2h)(1 + 22h)(1 + 24h)− 27h, which is a 6h + 1-bit
number (26h + 25h + 24h + 23h + 22h + 2h + 1) that can be computed with 4
elementary operations only, but using a shift count of 7h:

u0 = 1

u1 = u0 << h + u0

u2 = u1 << 2h + u1

u3 = u2 << 4h + u2

u4 = u3 − u0 << 7h .

We prove below that this number cannot be computed with fewer than 4
elementary operations, thus csup(n) ≥ 7h for this number, though there exists
a program that computes this number with 4 operations and a maximum shift
count of 2h (so, not larger than the number size 6h + 1):

u0 = 1

u1 = u0 << h + u0

u2 = u1 << h + u0

u3 = u2 << 2h + u1

u4 = u3 << 2h + u1 .

5

To prove that (1 + 2h)(1 + 22h)(1 + 24h)− 27h cannot be computed with fewer
than 4 operations, we need the following lemma:

Lemma 1 Let r be a nonnegative integer, (si)1≤i≤r be r integers equal to ±1

(signs) and (ci)1≤i≤r be r nonnegative integers. Consider n =
r

∑

i=1

si 2
ci. Then

there exists a representation of n in binary using the signed digits 0, 1, −1,
that has no more than r nonzero digits.

The lemma can be proved by induction. It is true for r = 0. Assume that it is
true up to r − 1. Let us prove it for the value r.

If all the ci’s are different, then the representation associated with the above
sum is suitable. Otherwise there exist j and k (j 6= k) between 1 and r such
that cj = ck. If sj 6= sk, we can remove the corresponding terms from the sum;
this leads to a sum with r − 2 terms, whose value n can be written with no
more than r−2 nonzero digits, therefore with no more than r digits. If sj = sk,
we can replace the corresponding terms by a term having the same sign and
an exponent equal to cj +1; this leads to a sum with r− 1 terms, whose value
n can be written with no more than r − 1 nonzero digits, therefore with no
more than r digits. �

Now we can prove the following theorem.

Theorem 2 For h ≥ 2, the number (1 + 2h)(1 + 22h)(1 + 24h) − 27h =
6

∑

i=0

2ih

cannot be computed with fewer than 4 elementary operations.

The number n = (1 + 2h)(1 + 22h)(1 + 24h)− 27h is represented in binary with
7 digits one, separated by at least a zero (since h ≥ 2); therefore it cannot be
written with fewer digits (well-known result on canonical Booth’s recoding).
As a consequence of the lemma, when n is expressed as sums and differences
of powers of two, there are at least 7 terms in this expression.

With only 1 elementary operation, we have at most 2 terms in the expression.
With 2 elementary operations, we have at most 4 terms after expanding the
expression. With 3 elementary operations, the values (j, k) associated with i
in a program can be, up to an isomorphism of the corresponding DAG:

• (0, 0) (0, 0) (1, 2) → 4 terms (after expansion).
• (0, 0) (0, 1) (0, 2) → 4 terms (after expansion).
• (0, 0) (0, 1) (1, 2) → 5 terms (after expansion).
• (0, 0) (0, 1) (2, 2) → 6 terms (after expansion).
• (0, 0) (1, 1) (0, 2) → 5 terms (after expansion).
• (0, 0) (1, 1) (1, 2) → 6 terms (after expansion).
• (0, 0) (1, 1) (2, 2) → 8 terms (after expansion).

6

Therefore, if n can be computed with fewer than 4 operations, then it must
be computed with a DAG of the form (0, 0) (1, 1) (2, 2), i.e. we can write:
n = (2a + sa) (2b + sb) (2c + sc) with a, b, c ≥ 1 and sa, sb, sc ∈ {1,−1}.

First, notice that n is congruent to 1 modulo 3:

n = (1 + 2h)(1 + 22h)(1 + 24h) − 27h

≡ (1 + 2h) × 2 × 2 − 2h ≡ 1 (mod 3).

If a = 1, then sa 6= 1 (because n is not divisible by 3) and sa 6= −1 (otherwise,
the expression can be written with at most 4 terms). Therefore a ≥ 2. For the
same reasons, b ≥ 2 and c ≥ 2. As h ≥ 2, n ≡ 1 (mod 4); therefore sasbsc = 1.

2a 6≡ 0 (mod 3), therefore 2a + sa 6≡ sa (mod 3), and as n 6≡ 0 (mod 3),
2a + sa 6≡ 0 (mod 3). The only possibility is: 2a + sa ≡ −sa (mod 3). For
the same reasons, 2b + sb ≡ −sb (mod 3) and 2c + sc ≡ −sc (mod 3). As a
consequence, n ≡ (−sa)(−sb)(−sc) = −(sasbsc) = −1 (mod 3), which leads to
a contradiction. This proves Theorem 2. �

3.5 Shift Reduction

We now discuss results that could allow us to get proved upper bounds on the
shift count (but they still need to be developed).

In Section 3.6, we will prove that csup(n) is finite using the following idea. If
there are very large shift counts, this means that the binary representations
of the values ui could be split into (at least) two parts separated by a long
sequence of zeros and the high-order parts would cancel each other. However,
computing these parts would take useless operations, thus increasing the value
of q.

Here’s an example with n = 17 and q = 3, where the shift counts c − 4 and c
can be as large as we want, c being an integer larger or equal to 4:

u0 = 1

u1 = u0 << (c − 4) + u0 = 2c−4 + 1

u2 = u0 << c − u0 = 2c − 1

u3 = u1 << 4 − u2 = 17

This can be formalized in the program, in the following way. First, for the
sake of simplification, the absolute values are removed: |u − v| is written u−v

7

or v − u depending on whether u ≥ v or u < v. Then, we work on Z[X]
(polynomials), where each monomial represents a part, the degree-0 monomial
being the low-order part. Initially, we have a low-order part only: u0 = 1. The
operations remain as before, except when a shift is regarded as “large”: in
this case, a multiplication by X is performed. For instance, with the previous
program and c = 51, we can write:

u0 = 1

u1 = u0X << 47 + u0

u2 = u0X << 51 − u0

u3 = u1 << 4 − u2 .

Thus, u3 = 24u1 − u2 = 24(247X + 1) − (251X − 1) = 17. We notice that
the large shifts have yielded cancellations and we obtain a degree-0 monomial.
Since the result does not depend on X, we can replace X by 0 (instead of 1)
to get a shorter program after its simplification: u0 = 1, u1 = u0 << 4 + u0.

3.6 Proof of a Large Upper Bound on S(m)

We now search for an upper bound on S(m) by using the following idea: If the
shift counts can be very large, then, as the number of elementary operations
is limited to q, itself bounded above by ⌊m/2⌋ (using Booth’s recoding and
the naive algorithm as described in [8,9]), there will be at least a “hole” giving
two parts in the binary representation of the intermediate results.

Let m be an integer greater than 1, n a m-bit nonnegative odd integer (our
constant) and (ui)0≤i≤q a minimal acceptable sequence associated with n. The
shift counts are denoted ci as in the formulation. Let σ be a permutation of the
first q nonnegative integers 1, 2, . . . , q that orders the shift counts, di = cσ(i)

and d0 = −1, so that for all 1 ≤ j ≤ q, we have dj ≥ dj−1. For instance, in the
following program

u0 = 1

u1 = u0 << 4 + u0 = 17

u2 = u0 << 4 − u0 = 15

u3 = u2 << 7 − u1 = 1903

u4 = u3 << 2 + u0 = 7613,

we can consider the permutation σ(1) = 4, σ(2) = 2, σ(3) = 1, σ(4) = 3.

8

Let j be an integer between 1 and q and let us mark (by multiplying by X)
the shifts of lines σ(i) for i ≥ j. For instance, if j = 3, this gives:

u0 = 1

u1 = u0X << 4 + u0 = 16X + 1

u2 = u0 << 4 − u0 = 15

u3 = u2X << 7 − u1 = 1919 − 16X

u4 = u3 << 2 + u0 = 7677 − 64X.

The corresponding polynomial can be written: A(X).X + b, where A is a
polynomial with integer coefficients and b an integer constant. We have:
A(1) + b = n.

As q is minimal, we have A(1) 6= 0. And as in the computation, each coefficient
of X is divisible by 2dj , then A(1) is divisible by 2dj and we have: |A(1)| ≥ 2dj .

Now, let us find an upper bound on |b|. To compute b, we write X = 0. A
simple reasoning by induction leads to:

|b| ≤
j−1
∏

k=1

(

2dk + 1
)

.

We can find an upper bound on |b| by considering upper bounds Dk on dk.
Let us assume that Dk ≥ max(2k−1, dk) for 1 ≤ k ≤ j − 1. Then we have:

j−1
∏

k=1

(

1 + 2−Dk

)

≤
j−2
∏

k=0

(

1 + 2−2k
)

= 2
(

1 − 2−2j−1
)

< 2.

Therefore |b| < 2Sj with: Sj = 1 +
j−1
∑

k=1

Dk.

As A(1) + b = n, we have |A(1)| ≤ n + |b|. Therefore

2dj ≤ |A(1)| ≤ n + |b| < 2m + 2Sj

and dj ≤ max(m,Sj). From this inequality, we can deduce that the smallest
shift count is bounded above by m, the next one by m + 1, then 2m + 2,
then 4m + 4, and so on. By induction, we can prove that for j ≥ 2, the j-th
shift count can be bounded by 2j−2(m + 1). Note that m ≥ 20 and for j ≥ 2,
2j−2(m+1) ≥ 2j−1, therefore we lost nothing by requiring that Dk ≥ 2k−1. As
a consequence, we have the following theorem.

9

Theorem 3 Let m be an integer greater than 1 and n a m-bit nonnegative
odd integer. Consider an optimal program that computes n. The largest shift
count is smaller or equal to

m if q = 1

2q−2(m + 1) if q ≥ 2.

As q ≤ ⌊m/2⌋, we can take for m ≥ 4:

S(m) = 2⌊m/2⌋−2(m + 1)

which is asymptotically equivalent to 2⌊m/2⌋−2 m. Unfortunately, this upper
bound is so large that it will not give us any interesting result in the following.

4 Compression

A program contains nonnegative integers. With the conventional representa-
tion of the nonnegative integers in base 2, it is not possible to know where
a word representing an integer ends in a sequence of 0’s and 1’s: we need
a prefix code of the integers. Of course, such a code should have a small
length complexity (for instance, the well-known base-1 representation 1n0 is
not acceptable). So, we will first describe a method to encode the nonnegative
integers efficiently (Section 4.1).

Then we will describe the encoding of an elementary operation and the whole
program (Section 4.2), and finally, Section 4.3 will deal with the size of the
program.

4.1 Prefix Code of the Nonnegative Integers

The problem of finding a prefix code of the nonnegative integers is related to
the unbounded search problem, which has been studied by Bentley and Yao
[2], Raoult and Vuillemin [10], Knuth [6], and Beigel [1]. However, for the sake
of simplicity, we will not choose a prefix code that is as short as the ones
defined in [1], in particular because our problem is more general: we need to
encode several integers and if we wanted a really short code, taking this fact
into account for the choice of the code could be preferable.

The conventional representation of the nonnegative integers in base 2 gives
an encoding in ⌊log2(n)⌋ + 1 bits (for n ≥ 1). So, we look for a prefix

10

code that would be in slightly more than ⌊log2(n)⌋ bits, i.e. a complexity
in log2(n) + o(log2(n)). The idea is to express the length of the word in an
efficient way. We could give it in the base-1 representation, but this is not
sufficient to achieve our goal. So, we will give it in base 2 and give the length
of the length in base 1 (in fact, a variant of that).

More precisely, 0, 1, 2 and 3 will respectively be encoded by 000, 001, 010,
011. For n ≥ 4, k denotes the number of bits of n without the first 1, i.e. n
has k + 1 bits (k ≥ 2). For k ≥ 2, h denotes the number of bits of k without
the first 1, i.e. k has h + 1 bits (h ≥ 1). The code word of n will consist of
h digits 1, followed by a 0, the h bits of k without the first 1, and the k bits
of n without the first 1. For instance, n = 17 is 10001 in base 2, and without
the first 1, we get the 4 digits 0001; thus k = 4, which is 100 in base 2, and
without the first 1, we get the 2 digits 00; thus h = 2, and 17 is encoded by
110 00 0001. Table 2 gives the code words for a few integers.

integer code word

0 000

1 001

2 010

3 011

4 10 0 00

5 10 0 01

6 10 0 10

7 10 0 11

8 10 1 000

15 10 1 111

integer code word

16 110 00 0000

31 110 00 1111

32 110 01 00000

63 110 01 11111

64 110 10 000000

127 110 10 111111

128 110 11 0000000

255 110 11 1111111

256 1110 000 00000000

511 1110 000 11111111

Table 2
Encoding of a few integers.

The length of the code word corresponding to a nonnegative integer n is:

C(n) =

3 if n ≤ 3,

⌊log2(n)⌋ + 2 ⌊log2(log2(n))⌋ + 1 if n ≥ 4.

We have: C(n) = log2(n) + o(log2(n)), i.e. C(n) ∼ log2(n).

4.2 Encoding of the Program

An elementary operation has the form ui = |si uj + 2ci uk|. Thus it suffices to
encode si and the nonnegative integers ci, j and k. The four words may be
simply concatenated. As si can take three possible values (−1, 0 and 1), we

11

use two bits 3 to encode si. The fourth combination of these two bits can be
used to indicate the end of the program (stop word). The nonnegative integers
ci, j and k are encoded as described in Section 4.1.

The program is encoded by concatenating the code words of its elementary
operations, and the two-bit stop word at the end.

4.3 Size of the Program

We are now interested in an upper bound on the size of the encoded program.

First, let us find an upper bound on the size of the i-th elementary operation.
The integer ci is bounded by S(m), as said in Section 3. The integers j and
k are bounded by i − 1. Thus, the i-th elementary operation can be encoded
with at most 2 + C(S(m)) + 2 C(i − 1) bits and a program of length q, i.e.
having q elementary operations, can be encoded with at most

q
∑

i=1

(2 + C(S(m)) + 2 C(i − 1)) + 2 = q (2 + C(S(m))) + 2
q−1
∑

i=0

C(i) + 2

bits. The main term of C(i) is ⌊log2(i)⌋ (for i ≥ 4), so we wish to evaluate the
corresponding sum, denoted L(p). We can prove by induction that

L(p) =
p

∑

i=1

⌊log2(i)⌋ = (p + 1) ⌊log2(p)⌋ − 2⌊log2
(p)⌋+1 + 2.

There is not much difference with p ⌊log2(p)⌋, and in particular, L(p) is asymp-
totically equivalent to p log2(p). So, without too much loss, we can bound i
by q in the above formula.

Therefore a program of length q can be encoded with at most

B(m, q) = q (2 + C(S(m)) + 2 C(q − 1)) + 2

bits. This bound is asymptotically equivalent to q (log2(S(m)) + 2 log2(q)),
and if we assume that S(m) = α.m as in Section 3, we have:

B(m, q) ∼ q (log2(m) + 2 log2(q)).

3 This is not necessarily the best choice, in particular knowing the fact that si = 0
can be avoided (except for the last elementary operation, if even integers are ac-
cepted as the input). But as this will not make a significant difference, we prefer to
keep the general case.

12

5 Lower Bounds on the Length of the Program

First, we define the following notation. If f and g are two nonnegative functions
on some domain, we write f(x) & g(x) if there exists a function ε such that
|ε(x)| = o(1) and f(x) ≥ g(x) (1 + ε(x)). This is also equivalent to say that
there exists a function ε′ such that |ε′(x)| = o(1) and f(x) (1 + ε′(x)) ≥ g(x).

For each m-bit nonnegative odd integer n, we consider an optimal program
that computes n, adding the following restriction on the shift counts to the
formulation: ∀i, ci ≤ S(m); of course, if S(m) is large enough, this is no
longer a restriction. For each n, the corresponding program length qn is thus
completely defined.

5.1 Worst Case

Let us consider the nonnegative odd integers having exactly m bits in their
binary representation. They are 2m−2 such integers. As all the corresponding
encoded programs must be different, there exists an integer whose code word
has at least m− 2 bits; let us denote by qworst the length of the corresponding
program. Therefore, one has B(m, qworst) ≥ m−2. This will give a lower bound
on the program length qworst in the worst case, as a function of m.

Asymptotically, under the S(m) = α.m assumption, we have, when m → ∞:

B(m, qworst) ∼ qworst (log2(m) + 2 log2(qworst))

Thanks to experiments, we can guess that log2(qworst) ∼ log2(m); since
qworst ≤ m, we can bound log2(qworst) by log2(m) without too much loss and
write: 3 qworst log2(m) & B(m, qworst). Using B(m, qworst) ≥ m − 2, we deduce:
3 qworst log2(m) & m. As a consequence, we obtain Theorem 4.

Theorem 4 Let m ≥ 2. For any positive odd integer n having exactly m bits
in its binary representation, consider an acceptable sequence computing n and
let qn denote its length. Let qworst = maxn qn be the maximum length. Assume
that the shift counts are bounded above by a function S(m) = α.m (α being a
positive constant). Then

qworst &
m

3 log2(m)
.

Note that this also proves what we have guessed: log2(qworst) ∼ log2(m).

13

We can also deduce an exact (instead of asymptotic) bound, for m ≥ 4:

qworst >
m − 4

2 + C(S(m)) + 2 C(m)

i.e. qworst is larger than:

m − 4

3 log2(m) + 4 ⌊log2(log2(m))⌋ + 2 ⌊log2(log2(α.m))⌋ + log2(α) + 6
.

Of course, this bound can easily be (very slightly) improved. But this is not
the goal of this paper.

We do not know if the lower bound given by Theorem 4 is reached. The only
currently known upper bound for the worst case is m/2 (obtained with Booth’s
recoding). But experiments suggest that qworst = o(m). [8,9]

5.2 Average Case

Now we wish to obtain similar results for the average case. Again, let us
consider the set Om of the 2m−2 nonnegative odd integers having exactly m
bits in their binary representation. As all the corresponding encoded programs
must be different, the average code word length is at least:

1

2m−2

2m−2

∑

i=1

⌊log2 i⌋ =
L(2m−2)

2m−2
= m − 4 +

m

2m−2
,

(where the function L was defined in Section 4.3), i.e.

1

2m−2

∑

i∈Om

B(m, qi) ≥ m − 4 +
m

2m−2
.

Therefore

2 + (2 + C(S(m)) + 2 C(m))
1

2m−2

∑

i∈Om

qi ≥ m − 4 +
m

2m−2

and

qav ≥
m − 6 + m/2m−2

2 + C(S(m)) + 2 C(m)
.

14

Asymptotically, under the S(m) = α.m assumption, we obtain Theorem 5, i.e.
the same bound as with the worst case.

Theorem 5 Let m ≥ 2. For any positive odd integer n having exactly m bits
in its binary representation, consider an acceptable sequence computing n and
let qn denote its length. Let qav = 22−m ∑

n qn be the average length. Assume
that the shift counts are bounded above by a function S(m) = α.m (α being a
positive constant). Then

qav &
m

3 log2(m)
.

Again, we do not know if the lower bound given by Theorem 5 is reached. The
only currently known upper bound for the average case is m/3 (obtained with
Booth’s recoding).

5.3 The Case of Bernstein’s Algorithm

With Bernstein’s algorithm (described in [3,4,8,9]), an elementary operation
can only be one amongst:

ui =

2ci ui−1 − 1 with ci ≥ 1,

2ci ui−1 + 1 with ci ≥ 1,

(2ci − 1) ui−1 with ci ≥ 2,

(2ci + 1) ui−1 with ci ≥ 2,

and we know that the shift count ci (for any i) is always bounded above by
S(m) = m. Contrary to the generic elementary operation of our formulation,
only one integer (i.e. ci) needs to be encoded per operation, instead of 3. As
a consequence, in the asymptotic lower bounds, instead of having a factor
3, we have a factor 1 (and these bounds are proved, as we do not need any
assumption on the function S):

qworst &
m

log2(m)
and qav &

m

log2(m)
.

It is probably possible to find larger lower bounds using the fact that the sum
of the shift counts has the same magnitude as m.

15

6 Conclusion and Acknowledgements

We gave lower bounds on the length of code that performs a multiplication by
a constant, according to a given formulation. Such bounds are not completely
proved; so, future work could consist in completing the proof (perhaps by
developing techniques introduced in this paper), but also in improving these
bounds.

The results given in Section 3.3 required several weeks of computations; these
were performed on a machine from the MEDICIS 4 computation center; I wish
to thank them.

References

[1] R. Beigel. Unbounded searching algorithms. SIAM Journal on Computing,
19(3):522–537, 1990.

[2] J. L. Bentley and A. C. Yao. An almost optimal algorithm for unbounded
searching. Information Processing Letters, 5(3):82–87, August 1976.

[3] R. Bernstein. Multiplication by integer constants. Software – Practice and

Experience, 16(7):641–652, July 1986.

[4] P. Briggs and T. Harvey. Multiplication by integer constants.
ftp://ftp.cs.rice.edu/public/preston/optimizer/multiply.ps.gz, July 1994.

[5] R. Fredrickson. Constant coefficient multiplication. Master’s thesis, Brigham
Young University, December 2001.

[6] D. Knuth. Supernatural numbers. In D. A. Klarner, editor, The Mathematical

Gardner, pages 310–325. Wadsworth International, Belmont, CA, 1981.

[7] V. Lefèvre. Multiplication by an integer constant. Research report RR1999-06,
Laboratoire de l’Informatique du Parallélisme, Lyon, France, 1999.

[8] V. Lefèvre. Multiplication by an integer constant. Research report RR-4192,
INRIA, May 2001.

[9] V. Lefèvre. Multiplication par une constante. Réseaux et Systèmes Répartis,

Calculateurs Parallèles, 13(4–5):465–484, 2001.

[10] J.-C. Raoult and J. Vuillemin. Optimal unbounded search strategies. Research
report 33, Laboratoire de Recherche en Informatique, Université de Paris-Sud,
Orsay, France, 1979.

4 http://www.medicis.polytechnique.fr/

16

