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1 Universität Karlsruhe
Fakultät für Informatik

IAKS Prof. Calmet
D-76128 Karlsruhe, Germany

calmet@ira.uka.de
2 INRIA Lorraine

615 rue du Jardin Botanique
54602 Villers-lès-Nancy Cedex, France

vincent@vinc17.org

Abstract. Computer algebra systems and automated theorem provers, which have comple-
mentary abilities, can be integrated to form an Open Mechanized Symbolic Computation
System (OMSCS). This framework could be extended to integrate numerical computation
systems. This paper aims at showing what problems can occur when dealing with numerical
computations and what can be done to solve them or at least to provide a clear meaning of
a numerical result; it constitutes a step toward this integration.

1 Introduction

In [1], P. G. Bertoli, J. Calmet, F. Giunchiglia and K. Homann introduced a general framework
integrating computer algebra systems and automated theorem provers, named OMSCS (Open
Mechanized Symbolic Computation System) and showed how this integrated system can be used
to solve problems which could not be tackled by each single system alone. Numerical computations
involving real or complex numbers and performed in a floating-point arithmetic, a fixed-point
arithmetic or any other arithmetic could be integrated into this framework (in this paper, we will
focus on floating-point arithmetic). But contrary to systems that operate on exact data, numerical
systems need to perform approximations; exact mathematical results are not even representable in
general. This is a real problem for the integration with other systems, as this paper will show. The
solution of doing exact computations or using computer algebra (working on exact data) is too
slow in general, or even often impossible. Thus one needs to take approximations into account, and
properties of a numerical software may be very different, depending on how these approximations
are done. This can be summarized as follows. In addition to fast computations, one would want:

– accurate and well-specified results: the absolute value of the difference between the returned
result and the mathematical result must be bounded above by some value (which could be
provided either by the user or by the computation system);

– consistent results, i.e. preserved mathematical properties (monotonicity, identities, etc);
– reproducible computations, i.e. unicity of the results, across different architectures or different

programs (that could be different versions of a same software).

These goals have often been dealt with for the arithmetic operations in floating-point arithmetic
(specified by the IEEE-754 standard), and more generally for conventional mathematical functions,
such as the exponential, the logarithm, the trigonometric functions, and so on; but they also
extend to whole programs (instead of libraries of given elementary mathematical functions) when
considering software integration, where some parts are seen as black boxes.

In the following, we will focus on what can be done concerning the results and their interpreta-
tion; we will neither go into detail on how this can be done, nor deal with the complexity (except
when this is a real problem).
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Section 2 introduces general problems that occur in numerical computations, related to the
above requirements. Section 3 presents a general way (without details) to formalize approximations
and work with them (accuracy goal). Section 4 deals with the unicity goal. Section 5 is a discussion
on proofs on numerical computations.

2 General Problems

2.1 Continuity Problems

A program can be seen as a sequence of operations, where some of them can be regarded as follows:
such an operation depending on entries x1, x2, . . . , xk consists in returning an approximation
f̃(x1, . . . , xk) to the exact result f(x1, . . . , xk) of a mathematical function f whose range is the
real numbers1. How these operations are linked together is not our concern; we do not want to
restrict to some kind of language, for instance. The whole program also consists in computing an
approximation to the result of a mathematical function.

Note that some algorithms may use the fact that an operation returns a rounded result in
the working precision. In this case, such an operation is not regarded here as returning an ap-
proximation. It just corresponds to an exact mathematical function (that depends on the working
precision). More is said about that later (Section 3).

Consider a program (or a part of a program) that returns a numerical value. This is an approx-
imation to the exact mathematical result with some error bounded by 2−m, where m is an integer
called the accuracy2 (in bits). A way to improve the accuracy is to increase the working precision.
If all the basic functions are continuous and the program corresponds to a fixed composition of
these functions, then by increasing the working precision, one can obtain a result with an error less
than 2−m for any m, i.e. a result as accurate as one wants. If there is some form of discontinuity in
the program, getting a potentially infinite accuracy by increasing the precision is not guaranteed.

Before going further concerning the discontinuity problems, let us assume that we are in the
easy case: we can get results as accurate as we want. The accuracy goal can be fulfilled, but what
about the unicity goal? This is particularly important to get the same results in different contexts
(e.g. different architectures, after an internal optimization, etc). For a given target accuracy, an
infinite number of values are valid (more precisely, a whole interval). Instead, the user may provide
a target precision3 (say, the least significant bit has a weight 2−p) and the most accurate result in
this precision is required; halfway cases must be fully specified, for instance by requiring the bit of
position −p of the result to be 0 in such cases. This requirement is called exact rounding. Exact
rounding is more often considered with basic functions, such as the arithmetic operations and
the square root in the IEEE-754 standard [9], or the elementary functions in some mathematical
libraries (for instance, IBM’s MathLib4 and Crlibm5 from the Arenaire6 project in the IEEE-754
double precision, MPFR7 in multiple precision), possibly in directed rounding modes (rounding
toward −∞, toward +∞ or toward 0).

If the error bound of an approximation is less than the distance between the computed value
and the middle of two consecutive representable values in the target precision, called a breakpoint,
then rounding this computed value is equivalent to rounding the exact value (as if it were computed
with an infinite precision): the exactly rounded result can be returned. Otherwise it is not possible
to decide what value should be returned; this problem is called the Table Maker’s Dilemma (TMD,
for short). In this case, more internal precision is necessary and one can restart the computations

1 We could also deal with complex numbers or matrices of real or complex numbers, with a specific
representation and norm. But for the sake of simplicity, we restrict to real numbers here.

2 This is here the absolute accuracy. We may also consider the relative accuracy or the accuracy on the
mantissa in a floating-point arithmetic. But the problems are basically the same, except for 0, where
only the absolute accuracy is defined.

3 In general, this would be a mantissa size, but for consistency, we consider the absolute precision here.
4 http://oss.software.ibm.com/mathlib/
5 http://perso.ens-lyon.fr/catherine.daramy/crlibm.html
6 http://www.ens-lyon.fr/LIP/Arenaire/
7 http://www.mpfr.org/



with more precision [39]. Therefore, assuming that one can compute an accurate enough result,
providing an exactly rounded result is possible, unless the exact value is a breakpoint, in which
case the TMD occurs with any internal precision and only a mathematical proof would solve it (or
if one can make sure that all the internal computations are exact, but this is very rare). But one
can notice that this is again a continuity problem: indeed, the breakpoints are the discontinuity
points of the round function.

One should note that choosing a directed rounding mode instead of the rounding to the nearest
value or some other similar solution for unicity would not solve the general problem. The break-
points would be different, but there would always be breakpoints. Deciding whether or not the
exact result of a computation is a breakpoint is equivalent to the well-known zero recognition
problem, i.e. decide whether a result is zero (more is said on this in Section 4).

For more information on the TMD concerning the elementary functions, see [23, 16–18, 13–15,
34].

2.2 Cancellation of the Rounding Errors

In general, rounding errors partially compensate each other in a computation. But in proofs (static
error analysis) or in interval arithmetic (with outward rounding, of course), the effects of rounding
errors must be added, except in particular cases (for instance, Newton’s iteration to solve an
equation is self-corrective). Thus one can obtain very pessimistic error bounds, at least in the
average case. However, this is not our primary concern here. It is still interesting to detect exact
results, though, to avoid generic rounding error bounds in such cases.

2.3 Validity and Consistency

Because of rounding errors, some mathematical properties, like

|X|√
X2 + Y 2

≤ 1

(corresponding to a cosine) for real numbers X and Y (not both equal to zero) or the monotonicity
of a computed function are no longer necessarily satisfied. As a consequence, one may obtain
undefined results when a computation leads to an argument that is outside the domain of some
function, whereas if the computations were exact (or carried out with a higher precision), such a
problem would not have occurred. For instance, consider the arc cosine of the above expression. A
computation model should take care of that.

Similarly, rounding errors may lead to inconsistencies. For instance, in computational geometry,
unless special care is taken concerning the accuracy, contradictory predicates may both hold, like
the following ones: points A, B, C are aligned, but points A, C, B are not aligned (using a different
permutation in the alignment formula).

Exact rounding on the final result allows to ensure validity and consistency, but this is not
always possible. Solving consistency problems in computational geometry is particularly difficult
as they are often linked to discontinuities (such as the alignment condition) and the problems
described in Section 2.1.

3 Toward a Universal Model

An error analysis can generally be described as follows: for each considered number, one has an
approximation and an error bound, with possible variants. For instance, the error bound may be
strict or loose; the sign may be known; instead of an approximation and an error bound, one may
have a lower bound and an upper bound (mainly in interval arithmetic).

To ease proofs and interoperability, it would be interesting to have a universal model that
can express all the above variants and possibly others. An object would be a set of attributes
associated with a number in some computation. All these attributes do not need to be defined.
These attributes can include:



– The exact value x. Of course, as soon as an approximation occurs, this value is unknown
(therefore not defined).

– An approximated value v (say, the best known approximated value).

– An absolute bound E on the error (useful for proofs).

– A relative bound on the error.

– A lower bound xinf , possibly minus infinity (useful for interval arithmetic).

– An upper bound xsup, possibly plus infinity (useful for interval arithmetic).

– Validity flag. Such information is useful when an algorithm has not been proved to be correctly
defined (in the mathematical sense) on all entries. In other words, the set of the real numbers
R is extended with a special value NaN (known as not a number8).

– Information about the error bounds: loose or strict bounds.

Values are expressed in some system (this may be floating point, fixed point, rational, and so
on), possibly a symbolic one when this makes sense. For instance, a bound may be expressed as a
function of the internal precision by a static analysis.

Objects could also be provided with an additional attribute allowing to determine the condition
number (that would be more or less equivalent to the computation of E, where the input object
has an error ε and as if internal computations were performed in an infinite precision, i.e. without
taking rounding errors into account).

Some attributes may be deduced from other attributes. For instance, from a lower bound and
an upper bound, one can compute a centered approximated value and a corresponding error bound.
Conversely, from an approximated value and an error bound, one can compute a lower bound and
an upper bound. To go further, one can say that in the initial state, no attributes are defined. Then
a computation consists in increasing knowledge by defining attributes, just like an error analysis.
Deductions can be done using general properties like |x − v| ≤ E and other formulas.

The objects could be extended to more complicated ones such as complex numbers or vectors,
allowing to take into account correlated errors and the structure of such objects.

Some algorithms are based on the exact rounding (or a weaker rounding behavior, such as
a faithful rounding) and in general, would not work if operations were exact. This is the case
of algorithms working on floating-point expansions to perform arbitrary precision computations
[5, 26, 32, 33, 7]. The rounding is here regarded as a feature. For instance, if for an addition in the
algorithm, the rounding is important, then the associated exact mathematical operation will not be
the conventional addition over the real numbers, but the rounded addition. This rounded operation
is formalized by conventional mathematical operations, e.g.

⌊

s × 2n−1
⌋

2n−1

as done in [22].

What has been described until now allows to track the loss of accuracy and to do some proofs on
the results, e.g. to prove that the exact result lies in some interval. We have dealt with values, but
not much with operators. An operator is not just a mathematical function. In practice, a function
evaluation is also performed with some precision. Information about how a function evaluation is
performed could be provided to be able to deduce properties of the computed results, e.g. error
bounds. For operators that work on approximated values, such information can be the precision,
with exact rounding or not, with faithful rounding or not, and so on. For operators that work on
xinf and xsup (like interval arithmetic), this can be properties of the interval bounds.

How objects are modified and interact with each other must be defined with care. Let us take an
example showing the difficulty: the iRRAM package9 (or some system behaving in a similar way),
which aims to implement a Real-RAM model. A simple computation can be regarded as a DAG
(directed acyclic graph), the nodes corresponding to objects. With some conventional software,
each object would be computed once (possibly with several passes, e.g. one corresponding to a

8 In IEEE arithmetic, the special NaN value is also used to mean that nothing is known about a real
value. This is not the case here.

9 http://www.informatik.uni-trier.de/iRRAM/



compiler optimization and one corresponding to the running program10). But with iRRAM, if the
package detects at some point in the program that early computations were not carried out with
sufficient precision, the internal precision is increased and the DAG is recomputed. That is, if we
want to see the iRRAM package as a black box, objects will magically be modified.

4 Returning a Unique Result

A model based on the Section 3 remarks will allow to lead to completely specified results if sufficient
information is provided concerning the operators. That would be the case on true IEEE-754 systems
with some constraints: computations are performed in double precision, only the operations defined
by the IEEE-754 standard are used (+, −, ×, /,

√
), and optimizations modifying the results (like

using the FMA11 operation on processors that have one) are avoided. In most cases, though there
exist standards, unicity is not guaranteed without writing special code to ensure it. For instance,
the IEEE-754 standard allows intermediate computations to be performed in an extended precision.
The ISO/IEC 9899:1999 standard (C language) has even fewer requirements.

Also one should note that unicity at the low level (basic functions) does not replace an error
analysis. Without an error bound or an enclosing interval, the final result may be completely
meaningless. As an example, let us consider the following sequence by J.-M. Muller:















u0 = 2
u1 = −4

un+1 = 111 − 1130

un

+
3000

unun−1

.

One can prove that un converges to 6, but on any machine (not using interval arithmetic or anything
similar), un seems to converge to 100 very quickly.

Ensuring exact rounding in some precision at the high level instead of the low level would have
important advantages:

– Final accuracy would be guaranteed.
– Results would not depend on the internal algorithms and how code has been compiled. So, new,

better algorithms could be used, and code could be optimized further by a compiler, having
fewer constraints on the intermediate computations.

But can this be done and how difficult is it? As it has been said in Section 2.1, the main problem
is related to discontinuities (we recall that this is equivalent to the zero recognition problem, also
called the constant problem or the identity problem).

First, the general case is undecidable [27]. However, particular classes of problems have been
studied, in particular by D. Richardson [28, 29, 12, 30] and J. van der Hoeven [35, 31, 36, 37]. But
for the largest classes, results are based on conjectures and/or the zero test is very complex (and
takes many resources, both time and memory). [30] deals with polynomials and the zero test is
theoretical (probabilistic and depending on an unknown constant); [28] introduces some expo-
nentials, but the zero test is based on Schanuel’s conjecture and is very complex. [29] and [12]
deal with the Uniformity Conjecture (based on probabilistic arguments, and very pessimistic on
most cases), which, if true, allows to design a very simple zero test though taking resources, and
J. van der Hoeven defined similar conjectures, called witness conjectures, in [35], but he eventually
found counter-examples to the weakest witness conjectures and the Uniformity Conjecture [37].
Concerning the TMD, T. Lang and J.-M. Muller give bounds for algebraic functions in [11].

Despite the above remarks, in practice, a zero test is simple for most cases, as for these cases,
computing with enough internal precision would be sufficient12. Problems occur only in particular
cases (possibly rare or even impossible in many applications); depending on the context, one could
return some form of error to warn the user so that he can take appropriate measures.

10 Well, refinements could be allowed, in which case that would be a behavior similar to iRRAM.
11 Fused multiply-add.
12 This may take a lot of memory (more precisely, with an unbounded complexity): consider (2n+2−n)−2n

with large n, for instance.



But solving this problem is particularly useful in geometric computations [38], where such
particular cases are common (due to intrinsic alignments, other general geometric properties and
degenerate inputs). C. Yap et al. wrote a package for this purpose: Real/Expr, and now the Core
library [6, 25, 10], computing radical expressions, and where the zero test is based on bounds for
such expressions [3, 4, 19–21].

5 Proofs and Standards

To be able to prove a program, the underlying system must have strong enough specifications, that
can be given by a standard (e.g. ISO/IEC 9899 for the C language, IEEE 754 for floating-point
arithmetic operations). A common difficulty is to correctly interpret those specifications and give
a correct formalization for proofs. Also, the underlying system is not necessarily proved and in
particular, it may have bugs. But concerning the numerical domain, many other difficulties arise
in practice.

For instance, let us consider a program written in C, doing numerical computations using the
type double (this is the floating-point type in C that provides the most portability).

First, if one considers the C standard only, then almost nothing is specified, in particular
concerning the accuracy. Before systems supported the IEEE-754 standard, one could not even
expect sensible results; for instance, on some Crays, 14.0/7.0 does not give 2 exactly, but a result a
little smaller (as a consequence, in C, (int) (14.0/7.0) would give 1)13, and there are machine
numbers x such that 1 × x gives an overflow (this may still occur with IEEE-754 arithmetic, see
below). Even if the processor conforms to the IEEE-754 standard, this does not mean that a C
implementation will; indeed special processor instructions, such as the FMA on the PowerPC,
could be used.

Nowadays the IEEE-754 standard is generally supported, but proofs based on this standard
must take all the points into account. This includes the subnormals, of course, but also the fact
that intermediate results may be computed in extended precision (this behavior is also allowed by
the C standard); this is the case with Linux on x86-compatible processors. One should note that
a proof valid for any precision would not necessarily apply here since implicit (and uncontrolled)
conversions from extended to double precision may introduce unwanted behavior; in particular,
such conversions may generate overflows, as the exponent range is also larger than in double
precision on x86. More information can be found in the addendum Differences Among IEEE 754
Implementations of [8]. Some bugs in language implementations (in the sense that they do not
conform to the specifications) are related to the extended precision: in the gcc compiler (which
does not convert results to the destination type in casts and assignments), in Java Virtual Machines
and in XPath implementations (where double-precision computations are required).

The elementary mathematical functions (exponential, logarithm, trigonometric functions, etc)
are not covered by the IEEE-754 standard. Thus one cannot assume that they are computed with
some error bound on any architecture. Worse, implementations are still deficient. For instance, in
directed rounding modes, the result is not always rounded in the correct direction (which precludes
interval arithmetic) and some mathematical libraries may give completely wrong results, if not
crash. Another example is the Intel Pentium processor sine and cosine functions not following
Intel’s own specifications: the rounding error may be much higher than the one claimed by Intel
due to a loss of accuracy in the range reduction.14

Another point is that transcriptions to a proof checker that appear to be direct may hide bugs
due to subtle differences between the language specifications and what humans may intuitively
interpret. For instance, the floating-point expressions x == y and x - y == 0 are not equivalent
(due to infinities in the IEEE-754 standard). The C language also has implicit conversions that
must be taken into account in proofs. This is particularly visible on integer arithmetic when mixing
signed and unsigned integer types. For instance, the following function:

13 The original example was the Fortran instruction I = 14.0/7.0, which gives the result 1.
14 http://www.naturalbridge.com/floatingpoint/intelfp.html



long long umd(void)

{

long a = 1;

unsigned int b = 2;

return a - b;

}

may return −1, return a positive value (e.g. 232 − 1) or have an undefined behavior, depending on
the implementation. Y. Bertot, N. Magaud and P. Zimmermann “proved” the implementation of
the GMP square root in C (i.e. more than just the algorithm), using the Coq proof assistant [2];
unfortunately type checking, implicit conversions in the C integer arithmetic and integer overflow
checking are not mentioned in the paper, and the mpn_dq_sqrtrem function, one of the proved
functions, contains a bug15 a bit similar to what happens in the above code (though this bug does
not show up with current C compilers, where signed arithmetic is implemented like a modular
arithmetic).

More generally, it is important to be aware of the completeness or the incompleteness of the
proofs. For instance, the following fact is mentioned in an Intel report [24]: the discovery of a bug
in the Pentium Pro floating-point execution unit disturbed the authors because this unit had been
subject of a previous formal verification project.

6 Conclusion

This paper described the problems linked to numerical computations, concerning the accuracy and
the unicity of the results, and started to define a general model for such computations. Future
work should consist in an implementation and applying examples (that would also help to improve
the model). Then the objects could be extended to complex numbers and matrices, for instance.
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6. T. Dubé, K. Ouchi, and C. Yap. Tutorial for Real/Expr package, 1997.
http://cs.nyu.edu/exact/realexpr/tutorial.ps.gz

7. C. Finot-Moreau. Preuves et algorithmes utilisant l’arithmétique flottante normalisée IEEE. PhD
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